
Serious game development as a creative learning
experience: lessons learnt

Varvara Garneli

Ionian University
 Corfu, Greece

c13garn@ionio.gr

Michail N. Giannakos
 Norwegian University of
Science and Technology

Trondheim, Norway
mgiannakos@acm.org

Konstantinos Chorianopoulos
Ionian University

Norwegian University of
Science and Technology

Corfu, Greece
Trondheim, Norway

choko@acm.org

Letizia Jaccheri

Norwegian University of
Science and Technology

Trondheim, Norway
letizia@idi.ntnu.no

Abstract—Computer programming skills in younger ages seem
to be a promising and challenging aspect. Many visual
programming tools have been developed in order to assist young
students and to improve the current teaching practices and
pedagogies. In this paper, we explore the potential effects of a
Project Based Learning (PjBL) approach in the field of computer
programming. In particular, we try to identify potential
differences on students’ programming habits/styles, between
game development, simulation, and traditional learning strategy;
in the context of PjBL. Our sample consisted of 53 middle school
students who formed three groups. Introducing programming
through a serious game development approach might inspire
students towards a creative learning experience. Moreover,
parameters like the class formation might affect the development
of programming skills. The students in the PjBL treatment were
able to complete a project successfully making fewer mistakes.
On the other hand, students enrolled in a more traditional top-
down approach chose to experiment with more complex
curriculum but not always successfully

Index Terms— Computer programming, pedagogy, project
based learning, visual programming languages, CS in Schools,
educational context, serious game development

I. INTRODUCTION
There are several approaches aiming at motivating learners

through creative programming activities. Game design and
development [13] and programmable hardware platforms [6]
are such examples. The game design and development could
be used in order to motivate and enhance learning in Software
Engineering and Computer Science topics. Such successful
implementations include programming, artificial intelligence,
software architecture, or object oriented design concepts and
skills [30]. In particular, learning programming concepts in a
video game context could be an enjoyable experience [2][13].
Additionally, programming competency could also promote
learning in more domains. A science context, for example,
could contribute in achieving a better understanding of
complex science concepts [23][24]. Exploring the potential
effects of a serious game development approach in the school
setting could give useful guidelines to the educators.

Digital literacy is not just the ability to use technological
tools like a word processor, a spreadsheet program or a
presentation manager. An important skill of the digital age
could be the ability to “construct” and “create” meaningful

things using computers [16][18]. Implementing programming
lessons from younger ages in the typical school environment

could help on achieving this goal. The benefits for young
students would be more than technical skills only. Such
examples are Computational Thinking [31], Critical Thinking
[32] and Creativity skills [17].

Introducing programming to young children is a very
challenging process. The early programming languages for
example were very difficult, mostly because of their syntax and
the unfriendly user interfaces and editors. Recently, several
visual environments have been developed and used in
Computer Science Education (CSE) with good results. They
can support, for example, a better understanding of
programming concepts, like sequences. They also help students
to understand the interactivity between the different parts of a
program [30]. Alice, Scratch, and Greenfoot [29] are some of
the most widely used programming languages in K12 CSE.
Additionally, various e - programming tools could also support
educators and learners in CSE and especially programming
[33]. Their friendly interfaces and features aiming at making
programming engaging to everyone [17]. Nevertheless, age,
gender, type of activity and goal should be carefully considered
when choosing the appropriate tool [29].

The teaching approach could also significantly affect the
effectiveness of the introductory programming by preventing
potential difficulties / misconceptions and engaging students
[21]. There is not just one way that can be used in teaching
programming skills successfully. There must be alternative
techniques depending on the various students’ needs and

expectations. The studies that have been conducted on this field
suggest different approaches which meet different student
needs [21]. Project Based Learning (PjBL) for example is a
pedagogical technique that is used very often in CSE. Many
educators have designed and successfully applied PjBL
approaches and published their experiences. There are many
suggestions on parameters like motivation, problem generation
or presentation, limitations, expectations etc. in order to
achieve better results [20][21]. PjBL is usually chosen due to
pedagogical grounds, to foster learning by doing and student
independence in knowledge construction. Students expected to
think critically and creatively [14].

In this study, we aim at exploring the benefits and
limitations of PjBL approach in K-12 CSE. In particular, we
suggest different instructional approaches in order to facilitate
deep and creative learning in the field of computer
programming.

2015 IEEE/ACM 4th International Workshop on Games and Software Engineering

978-1-4673-7046-2/15 $31.00 © 2015 IEEE
DOI 10.1109/GAS.2015.14

36

The rest of the paper is structured as follows: in the second
section related work and research questions are presented, in
the third section is described the methodology used to carry out
the didactic intervention and follows a discussion on the
results. Finally, we present conclusions of the reported
research.

II. BACKGROUND AND RESEARCH QUESTIONS

A. Learning Programming in a Video Game Development
Context
Modern technological tools and applications like video

games could be incorporated in the typical school environment,
in order to stimulate and enrich learning [8]. In particular,
video games could be considered as virtual experiences in
which players solve problems, and achieve learning and
mastery through pleasant activities [5]. When a video game is
not primarily used for entertainment then it could be defined as
a serious game [26]. Some types of students could be benefit
by alternative pedagogies such as serious games [4]. Pex4Fun,
for example, is a web-based serious game which is used for
educational purposes. In particular, students can edit their text
code in any browser in order to check the code execution and
be informed about its analysis [27]. While video games and
serious games could be significant learning mediums, game
design and development is an approach which could be based
on a constructivism / constructionism perspective. Computers
could be considered as the “construction materials” of video

games. While students design and develop their own video
games, learning can be achieved through active exploration,
experimentation, discussion, and reflection [18]. Students’

active improvement is encouraged [9]. Additionally, game
design and development could be considered as an enjoyable
learning experience which supports the deep learning of
computer science concepts [13][1]. Moreover, higher-order
thinking, abstraction skills [2] and self-confidence [1] can be
enhanced. Similarly in a computer simulation approach,
scientific concepts could be represented through programming
in order to support profound learning. An approach like this
requires some fluency with the programming language and the
relevant domain knowledge [23][24]. From this perspective,
the development of programming and computational modeling
practices could also be supported [24]. Moreover, integrating
modeling, programming, and physics for example could
promote deep understandings in science concepts [24]. A video
game, though, could be considered as a simulation which
allows the active participation of the player through the
presence of an avatar [5]. When the main goal of a video game
has educational nature, it can be considered as a serious game
[26]. Under this perspective, more research should be done in
the field of the serious game design and development, due to
the potential benefits on learners programming habits and
skills.

So, the first research question is: Could a serious game
development approach successfully influence the students’
programming habits, within a PjBL context?

B. Programming Lessons Using a PjBL Instructional
Approach in a Visual Programming Environment
There are several programming tools which could support a

serious video game development approach. Scratch for
example is a visual tool that aims at teaching programming
skills in a constructionist way. Supporting “tinker ability”, it

provides a command palette which support exploration.
Additionally to various command (move - steps), function
(mouse …) and trigger blocks (when – key pressed) which are
included in this palette, there is also a number of structures like
conditionals (if-else) or loops (repeat, forever) [11].
Programming is done by dragging blocks from the palette into
the scripting pane. Children can experiment with different
combinations of blocks which can fit together only if they
make syntactic sense. A stack of blocks can be triggered by
startup or a given key pressed. A project can be consisted of
many sprites. Each sprite has its own scripts, costumes, or
sounds [3][11][17].

On the other hand, PjBL is a learner–centered instructional
approach widely used in CSE. Knowledge is not just
transmitted to the students by the teacher but discovered with
his help [19]. Practically, firstly a problem is presented to the
students. Then, students are critically thinking and working for
the solution of the problem. Finally, they report their results.
Additionally, a problem can be given periodically in sub
problems [14].

Many parameters should be carefully considered while
implementing a PjBL approach. According to Richards (2009),
project type (e.g. an industry or a made – up), various group
features (e.g. size), group management and students motivation
are such examples. Moreover, several pedagogic styles could
also influence the learning process. An encouraging style, for
example, might promote more positive attitudes towards
computer programming and more self-confidence than
traditional instruction [10]. Additionally, a class could be
formed with a traditional top – down approach, in which
teacher first gives the theory and then the problem, in order to
allow students to put the theory into practice. Alternatively, in a
bottom-up approach, teacher introduces the theory within a
project framework [19]. Despite the several project based
approaches in the field of CSE, there is no clear evidence of the
advantages and limitations of class formation, while teaching
programming skills, using a visual programming tool. More
research should be done in order to assist educators in
designing learning activities based on the needs of their
students.

Hence, the second research question is: which are the
benefits of a bottom-up PjBL approach in a computer visual
programming context?

In order to investigate the aforementioned research
questions, we formed up two groups which were taught the
same programming curricula in a project framework (bottom
up). One group was taught through a science simulation project
and the second one through a game development project based
on science concepts. For the needs of this research, we also
formed another group (control) which was taught the same

37

programming curricula with a more conventional approach (top
down).

III. METHODOLOGY

A. Research Design
In this paper, we will explore the advantages and

limitations of a serious game development approach in CSE.
Moreover, we will investigate the potential effects of the class
formation in a PjBL instructional approach. For the needs of
this research, we formed up three different groups. All groups
were taught the same programming curricula. The same
definitions and examples were used in order to explain the
various programming concepts. The instructional methods
which have been used though were different. One group was
taught with a traditional top – down approach. For every new
programming concept, a project was given to the students in
order to put the theory into practice (control group). The other
two groups were taught with a bottom – up approach; students
were working on a project that has been given to them from the
beginning; periodically, new instructions were helping them in
solving various sub problems (experimental groups) [14]. Both
experimental groups were working on the same science based
project with one difference. One group was simulating a
phenomenon while the other group was working on the same
phenomenon from a game development perspective.

There are several programming tools which could be used
in this didactic intervention. We chose to use a visual
programming tool, the Scratch Programming Environment due
to its easiness for young students and its connection to the
principles of constructionism [17]. All students though had
already used scratch to make storytelling applications, the year
before. According to their teachers, they were familiar with the
usage of sequential code (say/for/sec, switch costume to,
move/steps, and turn/degrees).

All lessons were based on the constructionism principals
[15]. First, new concepts and examples were presented by the
teacher. Then instructions were given to the students in order to
complete their projects. Students also had the choice to request
knowledge according to their own preferences and take their
own decisions in designing or coding. Help and extra
knowledge was provided by the teachers [3].

B. Sampling and Processes
We performed a between group experiment with 66

students, 14 to 15 years old. The participants were students of
the third grade of the Gymnasium (middle school) and formed
three groups. We followed the school’s distribution in classes

as we wanted to keep students into their ordinary environment.
Students were working in pairs of their own choice. Some
students, though, did not manage to attend all classes due to the
longitudinal nature of the research. Thus, we had to remove
them from our data analysis. Our results were based on fifty
three students (26 boys and 27 girls) who attended all classes.
They formed three groups, the control group and the two
experimental ones, which engaged with the three respective
approaches. The control group was consisted of 18 students, 13
boys and 5 girls, the simulation group was consisted of 17

students, 7 boys and 10 girls, and the game development group
was consisted of 17 students, 6 boys and 12 girls.

While designing this intervention, we decided to base our
programming curriculum in the philosophy of the in time
pedagogy [12]. Under this perspective, we did not follow a
sequential presentation of the various concepts. Instead the
knowledge was introduced when needed. In Table 2, there is a
quick list of the programming curricula.

TABLE I. PROGRAMMING CURRICULA

1. Coordination and synchronization

2. Loops and Pen commands for designing
3. Conditionals, event handlers, and sensing

4. Variables

5. Operators for numerical (and boolean) values

We asked the experimental groups to be engaged with a
project concerning the function of an electric circuit. We chose
this curriculum as students had already attended relevant
lessons, in the physics class, the previous month. Students’

projects should include one battery and one switch to turn it on
or off. When the switch is on electrons and positive ions move
inside the circuit, so an electric lamp turns also on. Both
experimental groups should present the function of an electric
circuit but through different perspectives, a simulation and a
game development one. The simulation group was encouraged
to represent the circuit functions in order to help someone to
study it. On the other hand, the video game development group
was encouraged to copy the circuit’s functions to a video game

for educational purposes also (Figure 1).

Fig. 1. Screenshots from a simulation and a video game

In the beginning of the project, a small storytelling was
giving the description and motivation of it.

At the same time, the control group was taught the same
programming curriculum. The projects which have been
produced by the students were according the curriculum nature.
Additionally, projects’ futures were similar with the ones of the
experimental groups. For example, while the experimental
groups’ students were designing their circuits using pen
primitives, the control group’s students designed geometrical
shapes (Figure 2).

Fig. 2. Experimental and control group designs using pen primitives

38

C. Procedure
Firstly, the students were informed that they’ll attend

programming lessons using the Scratch Environment. The
experimental groups students were additionally informed that
the lessons will be conducted in a project framework and a
small description was given to them. Then, they created a
project according to their prior programming skills (pre-test).
All the groups completed 5 sessions of 90 minutes each.
During these sessions, students were taught the same
programming curricula and practiced with the three different
approaches. In particular, the control group’s students were

creating projects in order to practice in the several curricula
concepts and the experimental groups’ students were using the

new knowledge in order to complete the given project. All the
students were encouraged to freely decide the design and
coding of their projects. Extra help and knowledge was given
to the ones who needed. In the end of the sessions, students
were asked to complete another programming task using the
acquired programming knowledge (post test).

D. Measuring Instruments
We employed a pre-test to examine the students’

programming habits before the learning process. In particular,
we asked students to create a project in scratch based on their
prior programming skills. After the end of the teaching
intervention, students were asked to create another project (post
test). Pre and post tests lasted one didactic hour each. Based on
the primitive categories (Table 2), we rated the results in order
to be able to identify any potential differences in coding habits
between groups.

TABLE II. PRIMITIVES’ CATEGORIES

CATEGORIES (example code)

Coordination and synchronization (broadcast message or
when I receive message) Event handlers (when-clicked)

Loops(repeat, forever)
Conditionals(if-else)
Sensing (touching)
Variables(change-by)
Operators (=, <, >, and, random etc.)

Sequence (move-steps, say etc.)

Additionally, based on students’ work during the didactic
intervention, we counted how many students had successfully
completed their work.

E. Data Analysis
As we have already mentioned, 53 students participated in

this research. We wanted to find potential differences in their
programming habits between the pre and post-tests.

In order to assess how the regarding approaches enabled
students with certain programming skills and habits, we
counted the primitives’ usage for certain categories (Table 2) in

all pre and post-tests. Then, we computed the number of all
primitives that were used in each project. Finally, we did not
examine whether primitives were used correctly, just the total
number of errors that had been made [3].

A non-parametric Wilcoxon / Exact signed-rank test was
applied to the data. After calculating the difference (post – pre),
a Mann-Whitney U test was applied in order to find potential
differences between the groups.

Moreover, we assessed the students’ code during the

didactic intervention. Our goal was to distinguish how many
students managed to complete their project successfully.
Additionally, we gathered information from the teachers’

observations in order to validate our results.

F. Results
We used a quantitative method to analyze the results from

the pre and post tests. More particularly, our results were the
primitives that had been chosen by the students in order to
complete a project in scratch. First, we entered in IBM SPSS
statistics Version 20 how many times students used each one of
the primitive categories (Table 2) in their projects. Then, we
entered the number of the total number of primitives used in
each project and the total number of errors. After, we
conducted a Wilcoxon / Exact signed-rank test. Our results
indicated many differences between the groups in the post
phase of the experiment.

While working on the post tests projects, the students of the
control group experimented with more conditionals, variables,
operators, and sequence primitives. Additionally, they wrote
more code. The usage of coordination, synchronization, and
event handlers’ primitives didn’t change significantly. Some

students had already used an amount of the above in their pre
tests. On the other hand, students did not improve the usage of
loops and sensing primitives significantly.

The simulation group students chose to use more loops and
conditionals in comparison with their pre test. Similarly, some
students of this group used sequence, coordination,
synchronization, and event handlers’ primitives in their pre
tests. They did not improve the usage of variables, operators,
and sensing primitives significantly, though. In addition, this
group didn’t write more code in the post tests.

Finally, the game development group students made
progress in the usage of loops, coordination, synchronization,
event handlers, and sequence primitives. In addition, they
showed evidence of improvement in the conditionals and
sensing primitives’ usage but not in the variables and operators.

The conclusion of the above results is that the control group
mostly experimented with more complex programming
curricula while the game development group was improved in
all the primitive categories except for the more complex ones.
Their projects, though, had fewer errors. Finally, the simulation
group had the less improvement in the code produced after the
didactic intervention by the other two groups.

39

TABLE III. TESTING THE PRE AND POST TESTS

 Control Group (N=18) Simulation Group (N=17) Game development Group (N=18)

Primitive Categories Pre Test
Mean

Pre Test
Std. SD

Post
Test

Mean

Post
Test
SD

Z P (<.05)
Pre
Test

Mean

Pre
Test
SD

Post
Test

Mean

Post
Test
SD

Z P (<.05)
Pre
Test

Mean

Pre
Test
SD

Post
Test

Mean

Post
Test
SD

Z P
(<.05)

Loops 0.61 1.19 1.39 1.68 1.43 0.227 1.94 2.79 3.56 4.97 -2.14 .032* 0.00 0.00 2.00 3.97 -2.21 .031*

Conditionals 0.67 1.198 4.50 7.52 -2.91 .004* 1.648 2.83 3.44 4.76 -2.46 .014* 0.00 0.00 1.82 3.97 -1.83 0.068
Coordination.

Synchronization and
Event Handlers

11.89 7.75 12.89 8.81 -0.64 0.522 9.53 5.82 9.82 8.92 -0.27 0.549 12.77 7.22 21.47 13.86 -2.64 .021*

Variables 0.28 1.18 2.94 2.62 -2.77 .006* 0.47 1.37 1.25 3.57 -1.60 0.109 0.00 0.00 2.06 4.72 -1.60 0.109
Sensing 0.72 1.49 3.28 7.64 -1.73 0.180 1.71 2.87 2.75 4.01 -1.70 0.727 0.00 0.00 1.76 3.80 -1.84 0.066

Operators 0.00 0.00 1.67 1.61 -3.21 .000* 0.00 0.00 0.56 1.41 -1.60 0.109 0.00 0.00 0.29 0.77 -1.63 0.102
Sequence 11.94 6.14 18.61 11.63 -2.62 0.009 12.12 8.15 13.76 14.60 -0.25 0.806 12.00 8.08 21.41 15.89 -3.20 .001*

Total 26.11 13.19 45.28 26.70 -3.36 .001* 27.41 20.97 34.47 40.13 -0.66 0.510 24.76 14.9
3 50.82 41.45 -3.20 .001*

Errors 0.06 0.246 1.11 1.08 -2.98 .003* 0.12 0.33 0.25 0.58 -1.41 0.157 0.18 0.53 0.06 0.24 -0.82 0.414

* at 0.05 level of significance; SD, Standard Deviation; Z, Wilcoxon / Exact signed-
rank

Then, we calculated the difference between pre and post
tests. We applied a Kruskal-Wallis H test with a post hoc test
which is used in order to determine statistically significant
differences between two or more groups of an independent
variable on a continuous or ordinal dependent variable. By
doing that we attempt to investigate which treatment (group)
result higher and significant shift on students’ programming

habits

TABLE IV. DIFFERENCES BETWEEN TREATMENTS (GROUPS)

Control
Group
(Ν=18)

Simulation
Group
(Ν=17)

Game
Development

Group
(Ν=17)

Primitive
Categories

Mean
Rank

Mean
Rank Mean Rank H P(<.05)

Loops 24,86 27,34 25,94 0,259 0,879

Conditionals 30,06 25,75 21,94 3,020 0,221

Coordination.
Synchronization

and Event
Handlers

23,75 22,47 33,44 5,390 0,068

Variables 33,17* 21,38 22,76 8,441 0,015**

Sensing 26,5 23,72 26,16 0,443 0,801

Operators 34,97* 21,69 20,56 13,588 0,001**

Sequence 28,64* 19,03 31,71* 6,524 0,038**

Total 30,11* 18,24 30,94* 7,550 0,023**

Errors 35,47* 22,69 19,09 17,509 0,000**

*Significant High performance;**at 0.05 level of significance; H Kruskal-Wallis test
According to our results (Table 4), there is a statistically

significant difference between the game development group
and the simulation one, concerning the usage of sequence and
total number of primitives. The game development group looks
more productive and engaged with the programming activity
after the didactic intervention. Statistically significant
difference is additionally found in the control group as they
used more variables and operators and made more errors in
comparison with the simulation and the video game
development groups. The control group seems to experiment
more with complex curricula like the variables and operators
but not always successfully. Moreover, the control group wrote

more code than the simulation group but not than the game
development one. Finally, the simulation group did not show
better programming habits compared with both, the control and
the game development group

Fig. 3. Differences between treatments (Mean ranks)

The pre and post tests have been used in order to identify
possible changes occurred in the students’ programming habits.

However, we did not measure the students’ performance after

the didactic intervention. In order to have a better
understanding of the findings, we additionally assessed the
code which was produced by the students during the
intervention. In particular, we triangulated our findings with the
number of students who successfully completed their projects
and the teachers’ observations.

TABLE V. STUDENTS' PROJECTS DURING THE INTERVENTION

Students’
project/s

Control Group’s
Students

Simulation
Group’s

Students

Game
Development

Group’s
Students

Successfully
completed 89% 100% 65%

According to our findings (Table 5), the simulation group
created the most effective code with no errors, during the
intervention. On the other hand, 35% of the game development
group’s students did not manage to complete the requested

tasks successfully. It is possible that students focused more on
the game and the game development process and not on the
programming concepts [30]. Finally, 11% of the control
group’s students did not manage to complete their work.

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00

Control Group Simulation Group Game Development Group

Differences between treatments (groups)

40

Concluding, despite the good performance of the simulation
group, the programming habits of the students in the post tests
were not very promising. Students used fewer and no complex
programming concepts. Video game development group
students did not have good performance during the
intervention. Nevertheless, the same students chose to develop
more code in their post tests. It is possible that the video game
approach had positive influence on their programming habits.
Moreover, the top down philosophy gave the students of the
control group the inspiration to continue practicing with more
complicated programming concepts such as the variables and
the operators. Their projects, though, were not always without
errors.

Based on teachers’ observations the experimental groups
students were more stressed in the beginning. They were
demanding more help, especially, when they had coding errors.
They were though satisfied when they managed to complete
their projects successfully, but also felt a little tired in the end
of the process. The control group also completed successfully
the most of the tasks. Many students tried to create original and
beautiful projects. They were working more independently and
then they wanted to share their work with others

IV. DISCUSSION

A. Learning Programming in a Video Game Development
Context
Our research findings suggest that a game programming

context might provide an enjoyable experience which
stimulates learning [13].This learning setting could additionally
promote the creative expression of students [18]. Besides, a
learning experience which encourages students to put their
ideas into a project could be very positive. Through this
creative expression, learners continue to be stakeholders of the
project, as they feel that they own a part of it [25]. Overall,
combining science and programming concepts in a serious
game development context might be a very promising learning
setting. Further research should be done in order to confirm and
extend parameters like the acquired knowledge, in both
domains.

Nevertheless, we should underline the successful
completion of all projects made by the simulation group during
the intervention. In this learning setting, students had the
opportunity to learn and use effectively several computing
concepts. They presented a project without errors and
according the given instructions. Modeling and simulation
could help students to understand both, computing and science
concepts [23][24]. Further research could be done in order to
make this learning setting more inspiring for the students.

B. Programming Lessons Using a PjBL Instructional
Approach in a Visual Programming Environment
In this study, we tried to explore the effectiveness of a PjBL

teaching approach, in which students were taught programming
in a project framework. According to our research results,
students who have been taught with a conventional top – down
approach (control group) tend to experiment more with

complex concepts. This could be explained by the class
formation which gave students the opportunity of a better
pedagogical explanation. On the other hand, students who have
been taught in a project framework (experimental groups)
might lose some complex theory components due to the
pressure of solving the problem [19]. The control group’s

students, though, made more mistakes. Despite the small
duration of this didactic intervention, the experimental group’s

students seem to think critically, making the appropriate
decisions in order to successfully complete their projects [28].
It is obvious that both approaches could help students in
different ways. That is to say, several instructional methods
could support various students’ needs [21].

V. CONCLUSION
Game development could successfully promote computing

concepts in an enjoyable learning environment. Combining
science concepts in a game development approach could be an
interesting approach, which still motivates students in
programming and encourages them towards a creative learning
experience.

An approach which is based on a project framework could
inspire some students in order to develop further skills. The
free exploration might help students to learn how to think
critically and to select and implement their knowledge in order
to successfully complete a project. On the other hand, a top
down instructional approach could be also useful as it could
support the learning of complex programming concepts.

 Students could benefit from all approaches gaining
important skills. The appropriate instructional design of a class
setting depends on the learning goals and the students’ needs

and expectations.
In summary, this study provides evidence for the students’

programming habits / styles while implementing strategies like
serious game development, science simulation or a more
traditional learning. However, there are also some limitations.
First, the generalizability of these results must be carefully
approached since the field study was conducted in a specific
context (e.g., curriculum, age). Extra methods which have been
used like the teachers’ observations and the number of students

who managed to complete their tasks successfully, allow us to
have a complimentary picture of the findings. The implications
of this research concern the enrichment of the learning process
with alternative methods which meet specific learning goals
and deal with the various students’ needs and background.

Further research should be done in order to confirm and
extend the benefits of working in a serious game development
context. It is important to identify the advantages and the
limitations of this approach for both domains. Moreover, the
skills which could be supported by the various instructional
approaches should be identified clearly, in order to give useful
guidelines to the instructors.

ACKNOWLEDGMENT
The authors would like to thank all of the students and the

schools’ staff for their participation in the didactic intervention.

41

REFERENCES
[1] M. Al-Bow, D. Austin, J. Edgington, R. Fajardo, J.
Fishburn, C. Lara, and S. Meyer, “Using game creation for

teaching computer programming to high school students and
teachers,” ACM SIGCSE Bulletin, Vol. 41(3), pp.104-108,
2009.
[2] M. Carbonaro, D. Szafron, M. Cutumisu, & J. Schaeffer,
“Computer-game construction: A gender-neutral attractor to
Computing,” Computers& Education, vol. 55(3), pp. 1098-1111,
2010.
[3] A. Dahotre, Y. Zhang, and C. Scaffidi, “A qualitative study

of animation programming in the wild,” Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, 2010.
[4] B. Garneli, M. N. Giannakos, K. Chorianopoulos, & L.
Jaccheri, “Learning by Playing and Learning by Making,” In
Serious Games Development and Applications, Springer Berlin
Heidelberg, pp. 76-85, 2013.
[5] J. P. Gee, “Learning and games. The ecology of games:
Connecting youth, games, and learning,” vol. 3, pp. 21-40,
2008.
[6] M. N. Giannakos, L. Jaccheri, and R. Proto, “Teaching

Computer Science to Young Children through Creativity:
Lessons Learned from the Case of Norway,” Proceedings of the
3rd Computer Science Education Research Conference on
Computer Science Education Research, Open Universiteit,
Heerlen, 2013
[7] M. Høiseth, and L. Jaccheri, “Art and technology for

young creators,” In Entertainment Computing–ICEC 2011, pp.
210-221, Springer Berlin Heidelberg, 2011
[8] H. Y. Hsu, &S. K. Wang, “Using gaming literacies to

cultivate new literacies,” Simulation & Gaming, Vol. 41(3), pp.
400-417, Wiese Productions, 2010.
[9] Y. B. Kafai, 2006, “Playing and making games for learning

instructionist and constructionist perspectives for game studies,”

Games and culture, Vol. 1(1), pp. 36-40, 2006.
[10] D. Makris, K. Euaggelopoulos, K. Chorianopoulos, & M.
N. Giannakos, “Could you help me to change the variables?:
comparing instruction to encouragement for teaching
programming,” In Proceedings of the 8th Workshop in Primary
and Secondary Computing Education, pp. 79-82, ACM, 2013.
[11] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E.
Eastmond, “The scratch programming language and

environment,” ACM Transactions on Computing Education
(TOCE), Vol. 10(4), pp. 16, 2010.
[12] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari,
“Learning computer science concepts with scratch,” Computer

Science Education, vol. 23(3), pp. 239-264, 2013.
[13] C.C. Navarrete, “Creative thinking in digital game design

and development: A case study,” Computers& Education Vol.
69, pp. 320-331, 2013.
[14] M. J. O’Grady, “Practical problem-based learning in
computing education,” ACM Transactions on Computing
Education (TOCE) Vol.12.3: 10, 2012.
[15] S. Papert, and I. Harel, “Situating constructionism,”

Constructionism Vol. 36 : 1-11, 1991.

[16] S. Papert, "The Children’s Machine: Rethinking School in
the Age of the Computer," 1993.
[17] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk,
E. Eastmond,K. Brennan, and Y. Kafai, “Scratch: programming

for all,” Communications of the ACM, Vol. 52(11), pp. 60-67,
2009.
[18] M. Resnick, “Rethinking learning in the digital age”, 2002.
[19] D. Richards, “Designing project-based courses with a focus
on group formation and assessment," ACM Transactions on
Computing Education (TOCE) Vol. 9.1: 2, 2009.
[20] R. Romeike, “What’s my challenge? The forgotten part of

problem solving in computer science education,” Informatics
Education-Supporting Computational Thinking, Springer Berlin
Heidelberg, pp.122-133, 2008.
[21] M. Saeli, J. Perrenet, W. M. Jochems, and B. Zwaneveld,
“Teaching programming in secondary school: a pedagogical
content knowledge perspective,” Informatics in Education-An
International Journal, Vol. 10 1, pp. 73-88, 2011.
[22] J. R. Savery, and Th. M. Duffy, “Problem based learning:

An instructional model,” Vol. 35 5 pp. 31-38, 1995.
[23] P. Sengupta, J. S. Kinnebrew, S. Basu, G. Biswas, and D.
Clark, “Integrating computational thinking with K-12 science
education using agent-based computation: A theoretical
framework,” Education and Information Technologies, vol.
18(2), pp. 351-380, 2013.
[24] P. Sengupta, and A. V. Farris, “Learning kinematics in

elementary grades using agent-based computational modeling: a
visual programming-based approach,” In Proceedings of the
11th International Conference on Interaction Design and
Children, pp. 78-87, ACM, June 2012.
[25] T. Smith, K. M. Cooper, and C. S. Longstreet, “Software

engineering senior design course: experiences with agile game
development in a capstone project ,” In Proceedings of the 1st
International Workshop on Games and Software Engineering,
pp. 9-12, ACM, May 2011.
[26] T. Susi, M. Johannesson, and P. Backlund (2007). Serious
games: An overview.
[27] N. Tillmann, J. De Halleux, T. Xie, & J. Bishop, “Pex4Fun:

Teaching and learning computer science via social gaming,”

In Software Engineering Education and Training (CSEE&T),
2012 IEEE 25th Conference on pp. 90-91, IEEE, April 2012.
[28] A. Tiwari, P. Lai, M. So, and K. Yuen, “A comparison of

the effects of problem based learning and lecturing on the
development of students' critical thinking,” Medical
education, Vol. 40(6), pp. 547-554, 2006.
[29] I. Utting, S. Cooper, M. Kölling, J. Maloney, and M.
Resnick, “Alice, Greenfoot, and Scratch--a discussion,” ACM
Transactions on Computing Education (TOCE), Vol.10(4), pp.
17, 2010.
[30] A. I. Wang, & B. Wu, “The use of game development in
comouter science and software engineering education,”
[31] J. M. Wing, “Computational thinking,” Communications of
the ACM, Vol. 49(3), pp. 33-35, 2006.
[32] http://www.criticalthinking.org/pages/the-national-council-

for-excellence-in-critical-thinking/406.
[33] http://code.org/ .

42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

