
Computing Education in K-12 Schools:
A Review of the Literature

Varvara Garneli
Department of Informatics

Ionian University
Corfu, Greece

c13garn@ionio.gr

Michail N. Giannakos
Department of Computer and

Information Science
Norwegian University of Science

and Technology (NTNU)
Trondheim, Norway

mgiannakos@acm.org

Konstantinos Chorianopoulos
Department of Informatics

 Ionian University
 Corfu, Greece,
choko@acm.org

Abstract—During the last few years, the focus of computer
science education (CSE) in primary and secondary schools
(shortly K-12) have reached a significant turning point. This
study reviews the published papers on the field of K-12
computing education in order to summarize the findings, guide
future studies and give reflections for the major achievements in
the area of CSE in K-12 schools. 47 peer-reviewed articles were
collected from a systematic literature search and analyzed, based
on a categorization of their main elements. Programming tools,
educational context, and instructional methods are the main
examined categories of this research. Results of this survey show
the direction of CSE in schools research during the last years and
summarized the benefits as well as the challenges. In particular,
we analyzed the selected papers from the perspective of the
various instructional methods aiming at introducing and
enhancing learning, using several programming tools and
educational context in K-12 CSE. Despite the challenges, the
findings suggest that implementing computing lessons in K-12
education could be an enjoyable and effective learning
experience. In addition, we suggest ways to facilitate deep
learning and deal with various implications of the formal and
informal education. Encouraging students to create their own
projects or solve problems should be a significant part of the
learning process.

Keywords—computer science education, computer
programming, programming pedagogy, educational context,
programming tools, K-12 Education.

I. INTRODUCTION

The continual development of digital technology has
already changed the formal and informal education in many
ways. The technology based education could support and
enhance learning through several computer applications [18].
Moreover, new skills related to the learners’ work in a digital
environment need to be developed and measured [3]. Under
this perspective, exploring the role of Computer Science in a
technology based educational context might be interesting.
Introducing and enhancing computing concepts and skills for
example could provide learners with the opportunity to be
creatively engaged in various learning activities. Moreover,
boosting students’ interest about Computer Science Education
(CSE) and programming using several extracurricular activities
is an interesting perspective which seems to be very effective

in promoting computer science concepts and practices or
broadening CSE [34][45]. Additionally, implementing
computing lessons in various ways and in a more regular basis
like in the typical school environment, could enhance learning
and benefit students with the development of fundamental
skills like computational thinking [21] and creativity [15][16].
Computing education and especially programming could
support students in many ways in a carefully designed learning
setting. This perspective does not mean that all learners will
become necessarily professional programmers but that they
will gain useful practices and skills of the digital era.

Most of the early research on this area has focused on the
various programming tools description. In addition, other
approaches explore the difficulties, underline the benefits, and
suggest ways to deal with the several problems related to the
instruction of computer programming. Despite the multiple
efforts, the recent technical, infrastructural and societal
developments posit K-12 CSE research ripe for more
exploration. Scholars and educators have reported a variety of
outcomes from computing and programming initiative in K-12
schools; however the lack of a summarization from all these
empirical studies prevents stakeholders from having a clear
view of the benefits and the challenges. The purpose of this
article is to provide a review of research on K-12 computing
education approaches in order to summarize the findings, guide
future studies and give reflections for the major achievements
in the area of CSE in K-12. Particularly, we explore various
approaches and their effectiveness on introducing and
enhancing learning using various programming tools and
educational contexts in K-12 CSE. In addition, we suggest
instructional methods in order to facilitate deep learning and
deal with various implications of the formal and informal
education. Particularly, we explore the following research
questions:

RQ1: Which are the benefits and the challenges of using
diverse programming tools in K-12 computing education?

RQ2: What are the mainstream educational contexts for
motivating students and improving their learning in K-12
computing education?

RQ3: What are the most common instructional practices
and how are educators putting them into practice?

Page 543

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

The rest of the paper is structured as follows: in the second
section related work is presented, in the third section is
described the methodology used to carry out the systematic
literature review and follows a discussion on the results.
Finally, we present conclusions of the reported research.

II. RELATED WORK

During the last decades, many researchers have conducted
and published several studies in the field of computer
programming. Developed programming languages for novices
and professionals and their features, programming curricula,
and teaching strategies, are some of the various perspectives of
this research area.

Since the 1960’s, many programming languages and
environments have been developed, setting this way
programming widely accessible. Kelleher and Pauschin (2005)
presented their taxonomy of languages for novice programmers
of all ages. According to their research [9], there are several
programming tools which support various programming styles,
programming constructs, code’s look, or coding actions.
Additionally, these programming tools offer different degrees
of learning ability or collaboration [9]. Myers [13], when
presenting his taxonomies of visual programming and program
visualization in 1990, argued that textual languages seem to be
more appropriate for professionals. On the other hand, there is
a great interest in systems which use graphics in the
programming, debugging, and understanding of computer
science concepts. Additionally, there are several visual
languages which could support the teaching process. Users of
all ages can use them in order to create their own code [13]. In
a different approach, Webb is suggesting a number of
platforms which successfully could support educational
applications [20].

Nevertheless, learning to program is usually very hard.
Novice programmers come to deal with many difficulties and
challenges. Educators should provide students with an effective
learning environment. The appropriate knowledge to be taught
and the teaching strategies to be used need to be carefully taken
into consideration [17]. From the same perspective, Saeli has
underlined the importance of computer programming learning
as it could enhance students’ problem solving skills especially
in a multi-disciplinary environment. He also suggests the
careful selection and design of the programming knowledge
content, due to the difficulties that students encounter when
learning programming [19].

Computer programming skills could also enhance
computational thinking (CT). According to Wing, CT involves
concepts like “problem solving, designing systems, and
understanding human behavior” [21]. Under this perspective,
CT could be considered as an attitude and skill for everyone
and not just the computer scientists. Grover and Rea deal with
the concept and explore appropriate tools, environments,
assessment methods, and strategies about computational
thinking (CT) development in K-12 education [5].

Nevertheless, the various tools, the possible benefits, and
the challenges of computing lessons implementation in K-12
CSE still need more exploration. The multiple needs and
expectations of the students in the digital era make this need

more demanding. Successful approaches could help scholars
and educators to provide their students with more learning
opportunities and useful skills.

III. METHODOLOGY

A. Overview
For the context of this study, we have considered a peer

reviewed search in the following international online
bibliographic databases: AACE Digital Library, Academic
Search Premier, Association for Computing Machinery Digital
Library, and EBSCO Education Source included ERIC. Our
searching key terms were “learning” and “programming” and
“young students”. We also included the terms “games”,
“constructionism” or “do it yourself”. The examined period
was five years, from January 2009 to December 2013. This
process was conducted independently by two experts, a CS
educ. researcher and a research librarian and resulted in 1514
articles.

Figure 1: Papers Selection Methodology

A first step of this effort was to exclude papers describing
case studies in process, posters, conference reports, and not
related papers. Then, based on the papers’ abstracts, we
excluded articles irrelevant to programming curricula and tools
and not K-12 students learning. Afterwards, we were based on
the whole content of each article in order to explore the various
technology based pedagogical approaches used in K-12 CSE.
We found several papers which were concerning programming
tools (e.g. Alice [69], Scratch [52], Kodu [63]), virtual worlds
programming tools (e.g. SLurtles [4]), and programming video
games (e.g. Game Gidget [11], the Machineers [12] or the
Smart Lady Game [22]). Additionally, many papers were
referring not only to the typical school environment but also to
camps, after school or summer programs, like the Beowulf

Page 544

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

Bootcamp [1], the Digital Divas [10], and many others. In this
step, we decided to exclude papers without a detailed
description of the teaching design process or with informal
learning as it would be impossible for us to validate the
teaching process integration. Finally, we examined the content
of the remaining papers with focus on the research
methodology, and the quality of the results evaluation. Finally,
we decided to include some surveys which didn’t describe an
instructional method, due to the lack of papers referring to
tangible programming interfaces. We finally chose a total
number of forty seven papers for the needs of this review. A
list of the selected papers can be found at the end of the
reference section of the paper. We believe that the included
articles can provide us with a useful guideline of teaching
approaches aiming at teaching computing in K-12 education.

B. Types of Papers collected
An analysis of these 47 studies context revealed our

classification scheme, which is described by the following
categories:

Programming tools

Many tools have been introduced in order to teach
computing to young students in K-12 CSE. Most of them are
modern, offering a usable interface with many opportunities,
and aiming at making computing more attractive. In
categorizing the various programming tools, we have based on
the following assumptions. A text programming language may
include a text or a graphical user interface. The programming
process though means typing text lines. When a programming
language includes primarily visual expressions, then it is a
visual (graphical) one. This graphical interface is more usable
to the novice learners. The visual programming process needs
the ability to map various on-screen symbolic representations
like icons and other graphical objects to their results [2].
Finally, in the tangible interfaces, learners have the opportunity
to manipulate directly tangible objects which actually form the
generated code [56].

The various programming languages which have been used
for educational purposes could be generally categorized into
textual, visual, and tangible according to the “look” of their
code. In our research, we distinguished approaches using a text
based (n=12), a visual (n=29), or a tangible programming
language (n=3). Finally, in 3 papers more than one
programming tool were employed.

Educational context

Most of these research papers present: various computing
concepts (e.g. control flow and variables), skills (e.g.
procedural thinking), and practices (e.g. debugging) in a project
based methodology. Our focus though, was not on the
programming curriculum itself, but mainly on the educational
context, which has been used in order to motivate and enhance
students learning. Under this perspective, we distinguished the
following categories: game design and development (n=17),
programmable physical - tangible tools (n=18), modeling and
computation (n=3), and music generation (n=1). There were
also (n=8) papers describing more than one or not exactly
defined contexts.

A summary of the benefits and disadvantages of the most
popular approaches in computing education indicates different
options and challenges. Although we need to highlight that it is
not easy to decide the most suitable approach, as long as each
case has different characteristics (e.g. students’ backgrounds,
experience, and expectations).

Instructional methods

Teaching programming needs further abilities than
knowing how to program. Several computing concepts must
be represented and formulated in order to make comprehension
effective. In addition, many difficulties have to be overcome
[19]. In our review work, we have focused on the instructional
methods used with the various programming tools and
educational contexts, with the aim to motivate and enhance
students’ learning. Under this perspective, categorization is not
an easy issue. In our approach, we distinguished various
methods while teaching such as text, visual, tangible, and game
programming, modeling, and programmable objects -
platforms.

We do not specify methods for the K-12 CSE, but we only
provide with useful guidelines aiming at helping educators’
decisions and posing/leading/guiding questions for further
research.

IV. RESULTS AND DISCUSSION
Many researchers indicate the importance of a creative,

technology-enhanced learning in order to broaden CSE
[34][45] and to provide young students with skills like
computational thinking [21] and creativity [15][16]. Under this
perspective, introducing and enhancing computing to young
students in an enjoyable way, is not something new but
remains an interesting and demanding issue. In our research,
several papers concerning the learning of computing concepts,
principles and practices have been introduced. Additionally,
this concern seems to grow over the last years (figure 2).

Figure 2: Number of Papers published during the last five
years (2009 - 2013)

In particular, our study performs an exploration of
programming tools, instructional methods, and educational
contexts, in K12 field.

Page 545

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

A. Programming tools in K-12 education
Various programming tools have been used in computing

lessons for young students. In this literature 33 different
programming tools have been listed (see Appendix). Most of
them are modern, offering usable interface with many
affordances and aim at positing programming as an attractive,
creative and easy for all skill.

According to our study, most researchers have decided to
use visual programming languages (e.g. Modkit [54], Scratch
[52] – S4A [32] or App Inventor [35]) in introductory
programming lessons. There are though certain approaches
which choose to use an “authentic” and powerful text based
programming environment (e.g. Action Script [53], Arduino
Integrated Development Environments (IDEs)) [34][37]
[54]and in some cases a tangible one (e.g. Robo-Blocks[61],
Tern[38]). As a summary, it is important to highlight that there
are many and diverse features to be considered when deciding
the appropriate programming tool.

Textual programming and professional tools can support
the instruction of computing concepts [40]. They form an
authentic technology [53] which can offer a pleasant learning
experience [49], which in turn motivates students to engage in
programming [41]. Many times, learning programming could
be challenging for young students [53], and instruction
programming has also certain challenges for teachers even with
well-chosen materials [41]. On the other hand, some students
might be more inspired by authentic and professional tools
[49].

Visual programming language provide young students with
an engaging introduction to computing [23] and successfully
support the instruction of important CS concepts [52].
Additionally, skills like algorithmic thinking, managing faulty
situations [39] and digital fluency [39][67] could be supported.
At this point, we should mention that visual programming
languages include features which provide accessibility to
students with disabilities. In particular, students with learning
or behavioral disabilities who are able to use devises like
mouse, find this type of environments deeply absorbing [23].
When using a visual programming language, the computing
concepts should be carefully explained and pedagogically
supported [37]; in addition, the appropriate support should be
provided for the case of complex aspects and notions [29]. A
negative parameter could be the extra time devoted by teachers,
in order to learn the technical and pedagogical aspects of
recently developed programming environments [52].

A tangible interface could promote collaborative interaction
[38] and also make computing enjoyable and attractive by
encouraging children- especially the girls- in active exploration
and learning [38][56]. Younger children find this interface
easier to use [56] and engaging [61], however older children do
not seem to consider it as the easiest one. Nevertheless, they
still enjoy the experience [56].

Finally, we should also report that often both, learners and
educators, worry about and experiment with the transitioning
from an easier interface to a more difficult and powerful one in
order to be engaged in computing activities. An interesting
effort [54] validated the effectiveness of combining Modkit

which is a visual programming tool with the LilyPadProtoSnap
board to introduce computing to young students. They
additionally confirmed that students can successfully transit
from building programs in Modkit to writing C code. In the
first approach, students programmed while using Modkit and
then replicated and added functionality by programming in C
using the Arduino development environment. In another
approach, students built one program using Modkit, and then
repeated the activity, using exclusively the Arduino
development environment [54].

Deciding for the most appropriate programming tool is a
hard and sometimes complex decision, in most of the cases it
depends on its effectiveness to some specific learning goals
and also its adequacy for students’ needs and background.

B. (Different) Educational contexts of Computing in K-12
When we select the educational contexts, which will be

used in order to motivate and enhance computing learning, lots
of parameters should be taken into account. The learning
activities should be attractive to the students. Under a
constructivism / constructionism perspective, constructing
tangible artifacts facilitate students to build their knowledge
[14]. Recently, developed programming tools combined with
attractive educational contexts can support such approaches.
Knowing the various options and challenges of several context
types could be useful to educators.

Game design and development is a very popular approach
especially in introducing computing to students. There are
several tools like Scratch [28], Greenfoot [60], and Action
Script [53] which can motivate young students in game design
and development. Additionally, game modification “modding”
[50] or code remixing [28] could be used instead, especially
due to certain “class-workshop”-time constraints. Many
researchers argue that game development is an enjoyable
learning experience [24][27][53], which supports a profound
learning of computer science concepts [24][29][53], higher-
order thinking, and abstraction skills [27] and also provides
self-confidence [24]. It is important to mention here that due to
limitations like luck of time [65], teacher’s competency in
game development curricula and not just programming [24],
and managing student expectations [31] game development is
not always possible.

Tangible construction kits and robotics are very popular
approaches in K-12 computing education. There are various
programmable hardware platforms which offer an authentic
and stimulating learning experience like Arduino
[32][33][34][37], Lilypad Arduino [42][44][45][54], .NET
Gadgeteer hardware [59], Lego Mindstorms [47][56][63],
Makey – Makey [28], Pico Cricket board [62], or tangible
mobile computing [35][64]. The tangible nature of such
physical tools offers a positive [34], exciting, and productive
learning experience [28][45][59] which draws a diverse
population [54]. Electronic components (controllers) and other
prototyping kits and tools can increase students' comfort,
enjoyment, and interest with programming [37][45][47][54].
Problem-solving, expressive hands-on making and other
constructionism practices could also be supported [44].
Employing tangible or embodied interfaces seems to promote

Page 546

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

computing concepts and practices [34][42][45] , contribute to
broadening participation in CSE [42][45] and engineering in
general [51]. We should also mention that due to the common
use of assistive technology and open source software; robotics
has offered extra affordances to visually impaired students and
have achieved to increase their interest and confidence [47].
Mobile computing also provides a powerful new context for
motivating computational thinking [35].

Modeling and simulation aims at teaching primarily
scientific concepts using computer programming [25][57][58].
Students consider computer modeling as an attractive way of
learning programming [25]. For example, deep, conceptual
understandings can be achieved through activities which
integrate modeling, programming and physics [57][58]. On the
other hand, programming itself can be difficult to learn.
Integrating programming with learning other science concepts
can introduce challenges for students that pertain to learning
programming but may not be relevant for understanding
scientific concepts [58]. It is necessary that both teachers and
students have some fluency with the used programming
language in addition to the relevant domain knowledge [57].

Finally there are several approaches in which computing
concepts are taught through various activities based on the
appropriate each time curriculum [52], scaffold examples [66],
challenging applications [49], and music [48]. It is also critical
that, educators won’t give the impression that CS deals with
trivial matters [49].

Deciding the most appropriate contexts depends on many
parameters like the various programming tools features,
students’ age and experience, teaching goals etc. It is not an
easy decision, especial when students have different interests,
backgrounds, experience, and expectations.

C. Instructional methods in K-12 computing education
When teaching computing, lots of parameters need to be

considered, like the students’ age and experience or the
learning goals. Alternative methodologies provide educators
with the opportunity to deal with the complexity of each formal
or informal class. A popular methodology widely used in
computing education is a problem – project based approach,
when a student comes to implement his knowledge by solving
a problem or creating a project. Following a step by step
instructional procedure, could help learners to successfully
create their project especially within the limited time of the
school environment. This option though, is a negative factor
for the students’ creativity [26]. Educators very often come to
deal with this dilemma. Alternative creative instructional
approaches which support young students’ active involvement
in the learning process, according to the constructivism and
constructionism principles, could be very helpful. Scalable
game design or the “use – modify – create” approach are such
examples. Educators could additionally use discussions,
presentations, demonstrations, handouts, and tutorials to
motivate young students and also enhance learning.

There are several methods used by educators and
researchers in order to deal with the complexity and the needs
of various cases. The use of them though could be adapted in
more approaches with similar features:

For example, a text based programming language could
offer an authentic experience but it is also a challenging
approach. In most cases, students come to create their own
code, using some help by instructors or peers [40][48]. A
common practice which simplifies the procedure is to give a
“piece” of code to the students asking them to study, modify
and extend it. This could be helpful and also effective
especially for complex examples or shortage of time [41][49].
Additionally, programming activities combined with
kinesthetic ones could also provide a better understanding of
quite complex programming concepts [36].

A common practice when teaching game development
follows three steps: first, students play games in order to
develop some experience about games. Then, they practice
their programming skills using examples or challenges and
finally they create their own video game [24][60][67][68][69].
This approach is widely known as Use – Modify – Create.
Similarly, there is another program (Scalable Game Design)
which is running in USA. This one fosters creativity in the
public educational structure as by scaffolding, students’
progress from simple arcade games to more sophisticated ones
[26].

Many educators underline the effectiveness of the “in
time”pedagogy which follows a non sequential presentation of
the various concepts. In particular, new knowledge is provided
whenever necessary, through various activities and under a
project – based approach. Of course the projects must be
carefully selected depending on the different each time learning
goals [52].

Common strategies when students learn to use tangible /
physical objects while programming are the various
demonstrations / instructions or tutorials followed by creative
sessions in which help is provided when it is asked. In many of
these cases, projects’ presentations provide a good motivation
to the learners [32][34].

Programming could also be considered as a skill that could
facilitate learning in other domains. From this apprenticeship
perspective, teachers support students in achieving their goals
due to the complexity of various concepts [6], [7]. Support and
scaffolding provide students with a better understanding of
various difficult computational [46][66] and science [57][58]
concepts and practices. In addition, Inquiry Based Learning is a
powerful learning model where the instructor presents the
problem and through questions helps the students to solve it.
This way, the instructor and the students complete the project
together [7][69].

In a tangible programming approach, the instructional
method might includes several debugging tools combined with
a floor robot aiming at understanding or extending the code
[61].

A collaborative environment could be also a very important
aspect of designing a learning process. The various advantages
of a collaborative environment could support learning. Higher
achievements, positive relationships among students as well as
a healthier psychological adjustment could be such examples
[8]. The most common practice in computing learning is the
adoption of pair programming where two students write the

Page 547

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

same code simultaneously in order to solve / create the same
problem / project. There is evidence though, that there is some
positive influence on friend partnerships but not on the non-
friend ones [69].

Finally, the successful transitioning between frameworks
could be effective when using a visual or tangible
programming language. It is possible that some students will
need to extend their skills using more powerful and
professional tools. Some researchers have attempted, by using
an “easier” interface, to teach an activity and then repeated the
same activity by using a more complicated one, as it is
described above. These kinds of transitioning assist students to
move to more complex and maybe more powerful
implementations and also to develop a deeper understanding of
the various programming concepts [54].

It is clear that there are a lot of alternatives when an
educator comes to deal with several difficulties and limitations.
Knowing the advantages and disadvantages could be very
helpful in making decisions and helping students.
Unfortunately, there are no rules to be followed only decisions
to be made. This challenge is the obstacle and also the charm
of being a teacher anyway.

V. CONCLUSIONS
After reviewing over 47 studies on computing, there is a

common sense that implementing computing lessons in K-12
education could be an enjoyable and effective learning
experience. A successful implementation though needs many
decisions to be made. Choosing between the various
programming tools, activities, and instructional methods is a
quite challenging issue. Different needs and expectations could
lead us to different choices. It could be quite helpful to have
some guidelines from similar successful or not approaches.

There are various perspectives when deciding the most
appropriate programming tool to be used in a computing
activity. Textual programming and professional tools are an
authentic technology which can support learning [53][65].
There is no doubt though that for many students text based
languages could be very hard. These disadvantages could be
overwhelmed by the feeling that students are engaged with a
professional tool in order to create an authentic project. This
option could be interesting in attracting students with more
expectations and needs (RQ1). On the other hand, a visual
programming language provides young people a positive
introduction to computing and can support the successful
learning of important CS concepts and skills [23][52]. The
advantages of an option like this are also great as visual tools
make computing accessible to more people. In the typical
school environment for example, many students could be
benefit by a visual programming experience. Additionally,
educators have the option of transitioning their students from
one interface to the other. This could be useful in some class
settings (RQ1). From the same perspective, a tangible interface
supports programming in a collaborative environment and
could make programming attractive to the younger children
[38][56].

There are several interesting educational contexts which
could successfully motivate K-12 computing education. Game

development for example could be an enjoyable learning
experience which supports deeply learning of computer science
concepts [24][29][53]. The tangible nature of physical tools
could also offer a positive learning experience which also
promotes computing concepts and practices [34][42][45]. In
addition, modeling and programming aim at deep, conceptual
understandings [57][58]. Literature overview revealed that
educational contexts in K-12 computing education should be
carefully considered for motivating students and improving
their learning (RQ2).

Concluding, the programming tools and activities which
could support specific learning goals is a hard and crucial
decision. The appropriate instructional method though is a real
challenge. It is difficult to find a class with the same features
with another as learners can be different in many ways. That
makes conclusions impossible. Only alternative methodologies
could provide educators the opportunity to deal with the
complexity of each formal or informal class and support
different students needs. Creative sessions where students
create / modify projects or solve problems should be a
significant part of the learning process. We believe that
encouraging students in creative sessions with much of
scaffolding is a good starting point (RQ3).

A number of suggestions for further research have emerged
from reviewing prior and ongoing work on K-12 computing
education. Recommendations for future research could be the
features of various programming tools which could support
computer science concepts, skills, and practices deep learning
in an enjoyable way and also different students’ needs and
expectations. Additionally, exploring the instructional methods
used in the transitioning between textual, visual, and tangible
programming tools could be another interesting aspect.

VI. APPENDIX

Table 1: Review’s Programming Tools

Programming tool Description

Action Script
(http://www.adobe.com/devnet/a
ctionscript.html)

Action Script is an object-oriented
programming language for the Adobe
Flash Player and Adobe AIR runtime
environments.

Agent Cubes
(http://www.agentsheets.com)

Agent Cubes is a 3D game design &
programming tool, using a visual but not
drag and drop interface.

AgentSheets
(http://www.agentsheets.com)

Agent Sheets is a programming tool used
to create games and simulations through a
rule-based, drag-and-drop interface.

AIA
(http://appinventor.mit.edu/expl
ore/about-us.html)

MIT App Inventor is a blocks-based
programming tool to build apps for
Android devices

Alice
(http://www.alice.org)

Alice is a 3D oriented programming
language to create animations through a
drag and drop graphical interface.

Arduino IDE
(http://arduino.cc/en/guide/Envi
ronment)

The Arduino development environment is
used to upload programs to the Arduino
hardware and communicate with them. Its
interface also includes a text editor for
writing code.

Bricklayer Bricklayer is a text-enhanced graphical-
based programming environment where
students use a drag and-drop interface
which frees them from the syntax worries

Page 548

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

while at the same time presents them the
syntactic statements (Lau, Winnie WY, et
al., 2009).

BricxCC
(http://bricxcc.sourceforge.net)

Bricx is an integrated development
environment (IDE) for programming
LEGO MINDSTORMS robots

C# (Gadgeteer Environment)
(http://www.netmf.com/gadgetee
r)

.NET Gadgeteer is a platform for creating
electronic devices using hardware modules
and also provides a powerful programming
environment (C#).

CTSiM
(http://www.teachableagents.org
/research/simulation.php)

CTSiM is a combination of visual
programming, modeling, and simulation
using an easy to use drag and
drop interface.

Delphi
(http://www.delphibasics.co.uk/)

Delphi is an text based object oriented
Language

DevkitPro
(http://devkitpro.org/)

Homebrew development tool

F#
(http://fsharp.org/)

F# is a functional-first programming
language for complex computing problems
with simple, maintainable and robust code.

Game Maker
(https://www.yoyogames.com/stu
dio)

Game Maker is an IDE for cross-platform
games development without prior
programming knowledge. In addition
though, game control is supported by a
scripting language (GML)

Greenfoot
(http://www.greenfoot.org/door)

Greenfoot is a visual and interactive
programming environment with a usable
interface for object orientation using Java.

Java Bridge (App inventor)
(Android SDK tools)

The App Inventor Java Bridge helps on the
transition from developing Android apps
with AIA, to developing apps with Java
and the Android SDK.

Jypeli (C#) Jypeli is an open-source game
programming library

Kodu
(www.kodugamelab.com)

Kodu is a simple visual programming
language to create games for the PC or the
Xbox.

Lego NXT-G
(http://www.legoengineering.co
m/program/nxt-g/)

NXT-G is a programming language for the
LEGO NXT using a drag-and-drop,
graphical interface.

Logo Programming Language
(http://el.media.mit.edu/logo-
foundation/index.html)

The Logo Programming Language is a
learning tool which support interactivity,
modularity, extensibility, and flexibility of
data types

Microworlds EX
(http://www.microworlds.com/so
lutions/mwex.html)

MicroWorlds EX is a set of tools to create
science simulations, mathematical
explorations, and interactive multimedia
stories

Modkit
(http://www.modkit.com/about)

Modkit is an environment for
programming and engineering in a visual
and browser-based interface

PicoBlocks Software
(http://www.picocricket.com/do
wnload.html)

PicoBlocks software supports an easy to
use, graphical blocks based interaface.

Python (Earsketch)
(http://earsketch.gatech.edu)

EarSketch’s software toolset enables
students to create music by manipulating
loops, composing beats, and applying
effects with Python code.

Robo-Blocks The Robo-Blocks system controls the
movement of a floor robot by physical
command blocks which can be snapped
together through magnetic connectors. The
chain of command blocks are then attached
to a master block which interprets the
program sequence and transmits the
commands wirelessly to the floor robot.

Scratch - S4A -Scratch is a programming language for

(http://scratch.mit.edu)
(http://s4a.cat)

games, and animation creation using a
graphical, drag and drop interface. Scratch
is designed and maintained by the Lifelong
Kindergarten group at the MIT Media Lab.
-S4A is a Scratch modification for the
Arduino hardware platform programming
using new blocks for managing sensors
and actuators connected to Arduino.

Script Ease (Aurora Toolset) Aurora Toolset is a game construction
toolset to specify interactions through the
use of patterns. The most authors never see
the scripting code which is generating
automatically by ScriptEase

Snap
(http://snap.berkeley.edu/)

Snap (BYOB) is a visual, drag-and-drop
programming language that allows
building blocks. It includes concepts
suitable for a serious introduction to CS for
high school or college students.

Stagecast Creator
(http://www.stagecast.com)

Stagecast Creator is an easy-to-learn, easy-
to-use software tool for making games and
simulations. The rules of behavior are
generating by moving the characters
around (by demonstration).

T_ProRob The T_ProRob (tangible) system consists
of 28 commands and 16 smaller
parameters, all cubic shaped. Users
connect the cubic commands and
parameters and the program’s execution
starts by pressing a button on the top of the
basis (‘‘master box’’).

Tern
(http://hci.cs.tufts.edu/tern/)

Tern is a tangible programming language
to create physical computer programs
using interlocking wooden blocks. The
shape of the interlocking blocks creates
physical syntax (no invalid programs) and
the tern programs can be compiled by the
pressing of a button.

ViMAP
(http://www.visualprogramming
.org/p/about-this-site_29.html)

ViMAP is a multi-agent based visual
programming language to support science
learning through scientific modeling and
computational thinking.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the research
librarian, Christopher Lawton.

REFERENCES

[1] S. R. Brandt, C. Dekate, P. LeBlanc, & T. Sterling, “Beowulf bootcamp:
teaching local high schools about HPC,” In Proceedings of the 2010
TeraGrid Conference, p. 4, ACM, August 2010.

[2] M. M. Burnett, "Visual programming," Wiley Encyclopedia of Electrical
and Electronics Engineering, 1999.

[3] Y. Eshet, “ Digital literacy: A conceptual framework for survival skills
in the digital era,” Journal of Educational Multimedia and Hypermedia,
Vol. 13(1), pp. 93-106, 2004.

[4] C. Girvan, B. Tangney, & T. Savage, “SLurtles: Supporting
constructionist learning in< i> Second Life</i>,” Computers &
Education, Vol. 61, pp. 115-132, 2013.

[5] S. Grover, and R. Pea, "Computational thinking in K–12. A review of
the state of the field," Educational Researcher, Vol. 42.1, pp. 38-43,
2013.

[6] M. Guzdial, "Software realized scaffolding to facilitate programming for
science learning," Interactive Learning Environments, Vol. 4.1, 001-044,
1994.

[7] C. E. Hmelo-Silver, R. G. Duncan, and C. A. Chinn, "Scaffolding and
achievement in problem-based and inquiry learning: A response to
Kirschner, Sweller, and Clark (2006),” Educational Psychologist,
Vol. 42.2,pp. 99-107, 2007.

Page 549

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

[8] D. W. Johnson, R. T. Johnson, &K. A. Smith, “ Cooperative learning:
Increasingcollege faculty instructional productivity”, ASHE-ERIC
Higher Education Rep. No. 4, 1991.

[9] C. Kelleher, R. Pausch, "Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice
programmers," ACM Computing Surveys (CSUR), Vol. 37.2 pp. 83-137,
2005.

[10] C. Lang, A. Craig, J. Fisher, & H. Forgasz, “Creating digital divas:
scaffolding perception change through secondary school and university
alliances,” In Proceedings of the fifteenth annual conference on
Innovation and technology in computer science education, pp. 38-42,
ACM, June2010.

[11] M. J. Lee, A. J. Ko, & I. Kwan, “In-game assessments increase novice
programmers' engagement and level completion speed,” In Proceedings
of the ninth annual international ACM conference on International
computing education research, pp. 153-160, ACM, August 2013.

[12] H. Lode, G. E. Franchi, & N. G. Frederiksen, “Machineers: playfully
introducing programming to children,” In CHI'13 Extended Abstracts on
Human Factors in Computing Systems, pp. 2639-2642, ACM, April
2013).

[13] B. A. Myers, "Taxonomies of visual programming and program
visualization,"Journal of Visual Languages & Computing, Vol. 1.1 pp.
97-123, 1990.

[14] S. Papert,and I. Harel, "Situating constructionism," Constructionism36:
1-11. 1991.

[15] S. Papert, and M. Resnick, “Technological Fluency and the
Representationof Knowledge,” Proposal to the National Science
Foundation, MIT MediaLaboratory, 1995.

[16] M. Resnick, “Rethinking learning in the digital age,” 2002.
[17] A. Robins, J. Rountree, and N. Rountree, "Learning and teaching

programming: A review and discussion,"Computer Science
Education Vol. 13.2, pp.137-172, 2003.

[18] J. M. Roschelle, R. D. Pea,C.M. Hoadley, D.N. Gordin, & B. M. Means,
“Changing how and what children learn in school with computer-based
technologies”, . The future of children, pp. 76-101, 2000.

[19] M. Saeli, J. Perrenet, W. M. Jochems, &B. Zwaneveld, “Teaching
programming in secondary school: a pedagogical content knowledge
perspective,” Informatics in Education-An International Journal, vol
10_1, pp. 73-88, 2011.

[20] H. Webb, “Computer applications for the classroom: A review,” Journal
of Computing Sciences in Colleges, Vol. 27(3), pp. 65-72, 2012.

[21] J. M. Wing, “Computational thinking,” Communications of the ACM,
Vol. 49(3), pp. 33-35, 2006.

[22] A. Zeid, G. Al-Mirza, & L. Al-Meshwah, “SLG: an online educational
simulation game to teach programming concepts,” In Proceedings of the
Second Kuwait Conference on e-Services and e-Systems, p. 15, ACM,
April 2011.

SYSTEMATIC REVIEW REFERENCES

[23] J. C. Adams, “Scratching middle schoolers' creative itch”, In
Proceedings of the 41st ACM technical symposium on Computer
science education, pp. 356-360, ACM, March 2010

[24] M. Al-Bow, D. Austin, J. Edgington, R. Fajardo, J. Fishburn, C. Lara, &
S. Meyer, “Using game creation for teaching computer programming to
high school students and teachers”, ACM SIGCSE Bulletin, Vol. 41(3),
pp. 104-108, 2009.

[25] J. Benacka, &J. Reichel, “Computer Modeling with
Delphi,”InInformatics in Schools. Sustainable Informatics Education for
Pupils of all Ages, pp. 138-146, Springer Berlin Heidelberg, 2013.

[26] V. E. Bennett, K. H. Koh, &A. Repenning, “A. CS education re-kindles
creativity in public schools,” In Proceedings of the 16th annual joint
conference on Innovation and technology in computer science education,
pp. 183-187, ACM, June 2011.

[27] M. Carbonaro, D. Szafron, M. Cutumisu, &J. Schaeffer, “Computer-
game construction: A gender-neutral attractor to Computing Science,”
Computers & Education, Vol. 55(3), pp. 1098-1111, 2010.

[28] R. Davis, Y. Kafai, V. Vasudevan, &E. Lee, “The education arcade:
crafting, remixing, and playing with controllers for scratch games,”
InProceedings of the 12th International Conference on Interaction
Design and Children, pp. 439-442, ACM, June 2013.

[29] J. Denner, L. Werner, &E. Ortiz, “Computer games created by middle
school girls: Can they be used to measure understanding of computer
science concepts?” Computers & Education, Vol. 58(1), pp. 240-249,
2012.

[30] J. P. Dimond, S. Yardi, &M. Guzdial, “Mediating programming through
chat for the OLPC,” In CHI'09 Extended Abstracts on Human Factors in
Computing Systems, pp. 4465-4470, ACM, April 2009.

[31] K. Doran, A. Boyce, S. Finkelstein, &T. Barnes, “Outreach for
improved student performance: a game design and development
curriculum,” InProceedings of the 17th ACM annual conference on
Innovation and technology in computer science education, pp. 209-214,
ACM, July 2012.

[32] M. N. Giannakos, &L. Jaccheri, “Designing creative activities for
children: the importance of collaboration and the threat of losing
control,” InProceedings of the 12th International Conference on
Interaction Design and Children, pp. 336-339, ACM, June 2013.

[33] M. N. Giannakos, &L. Jaccheri, “What motivates children to become
creators of digital enriched artifacts?” In Proceedings of the 9th ACM
Conference on Creativity & Cognition, pp. 104-113, ACM, June 2013.

[34] M. N. Giannakos, L. Jaccheri, &R. Proto, “Teaching Computer Science
to Young Children through Creativity: Lessons Learned from the Case
of Norway,” In Proceedings of the 3rd Computer Science Education
Research Conference on Computer Science Education Research, pp.
103-111, Open Universiteit, Heerlen. April 2013.

[35] S. Grover, &R. Pea, “Using a discourse-intensive pedagogy and
android's app inventor for introducing computational concepts to middle
school students,” In Proceeding of the 44th ACM technical symposium
on Computer science education, pp. 723-728, ACM, March 2013.

[36] K. Gunion, T. Milford, &U. Stege, “Curing recursion aversion,” ACM
SIGCSE Bulletin, Vol. 41(3), pp.124-128, 2009.

[37] M. Høiseth, &L. Jaccheri, “Art and technology for young creators,”
InEntertainment Computing–ICEC, pp. 210-221, Springer Berlin
Heidelberg, 2011.

[38] M. S. Horn, E. T. Solovey, R. J. Crouser, &R.J. Jacob, “Comparing the
use of tangible and graphical programming languages for informal
science education,” In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 975-984, ACM, April 2009.

[39] A. Ioannidou, A. Repenning, &D. C. Webb, “AgentCubes: Incremental
3D end-user development,” Journal of Visual Languages &
Computing, Vol. 20(4), pp. 236-251, 2009.

[40] V. Isomöttönen, A. J. Lakanen, &V. Lappalainen, “K-12 game
programming course concept using textual programming,”
In Proceedings of the 42nd ACM technical symposium on Computer
science education, pp. 459-464, ACM, March 2011.

[41] G. Kacmarcik, &S. G. Kacmarcik, “Introducing computer programming
via gameboy advance homebrew,” . In ACM SIGCSE Bulletin, Vol. 41,
No. 1, pp. 281-285, ACM, March 2009.

[42] Y. B. Kafai, K. Searle, E. Kaplan, D. Fields, E. Lee, &D. Lui, “Cupcake
cushions, scooby doo shirts, and soft boomboxes: e-textiles in high
school to promote computational concepts, practices, and perceptions,”
In Proceeding of the 44th ACM technical symposium on Computer
science education, pp. 311-316, ACM, March 2013.

[43] R. Khaled, “Equality= inequality: probing equality-centric design and
development methodologies,” In Human-Computer Interaction–
INTERACT, pp. 405-421, Springer Berlin Heidelberg, 2011.

[44] S. Kuznetsov, L. C.Trutoiu, C. Kute, I. Howley, E. Paulos, &D.
Siewiorek, “Breaking boundaries: strategies for mentoring through
textile computing workshops,” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 2957-2966,
ACM, May 2011.

[45] W. W. Lau, G. Ngai, S. C. Chan, &J. C. Cheung, “Learning
programming through fashion and design: a pilot summer course in

Page 550

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

wearable computing for middle school students,” ACM SIGCSE
Bulletin, Vol. 41(1), pp. 504-508, 2009.

[46] C. M. Lewis, “Is pair programming more effective than other forms of
collaboration for young students?” Computer Science Education, Vol.
21(2), pp. 105-134, 2011.

[47] S. Ludi, &T. Reichlmayr, “The use of robotics to promote computing to
pre-college students with visual impairments,” ACM Transactions on
Computing Education (TOCE), Vol. 11(3), pp. 20, 2011.

[48] B. Magerko, J. Freeman, T. McKlin, S. McCoid, T. Jenkins, &E.
Livingston, “Tackling engagement in computing with computational
music remixing,” In Proceeding of the 44th ACM technical symposium
on Computer science education, pp. 657-662, ACM, March 2013.

[49] G. Maggiore, A. Torsello, &F. Sartoretto, “Engaging high school
students in computer science via challenging applications,”
InProceedings of the 2011 conference on Information technology
education, pp. 43-48, ACM, October 2011.

[50] D. Makris, K. Euaggelopoulos, K. Chorianopoulos, &M. N. Giannakos,
“Could you help me to change the variables?: comparing instruction to
encouragement for teaching programming,” In Proceedings of the 8th
Workshop in Primary and Secondary Computing Education, pp. 79-82,
ACM, Novenber 2013.

[51] G. Marcu, S. J. Kaufman, J. K. Lee, R. W. Black, P. Dourish, G. R.
Hayes, &D. J. Richardson, “Design and evaluation of a computer
science and engineering course for middle school girls,” In Proceedings
of the 41st ACM technical symposium on Computer science education,
pp. 234-238, ACM, March 2011.

[52] O. Meerbaum-Salant, M. Armoni, &M. Ben-Ari, “Learning computer
science concepts with scratch,” Computer Science Education, Vol.
23(3), pp. 239-264, 2013.

[53] C. C. Navarrete, “Creative thinking in digital game design and
development: A case study,” Computers & Education, Vol. 69, pp. 320-
331, 2013.

[54] K. Qiu, L. Buechley, E. Baafi, & W. Dubow, “A curriculum for
teaching computer science through computational textiles”,
In Proceedings of the 12th International Conference on Interaction
Design and Children, pp. 20-27, ACM, June 2013

[55] M. Sands, J. Evans, &G. D. Blank, “Widening the K-12 pipeline at a
critical juncture with Flash™,” Journal of Computing Sciences in
Colleges, Vol. 25(6), pp. 181-190, 2010.

[56] T. Sapounidis, &S. Demetriadis, “Tangible versus graphical user
interfaces for robot programming: exploring cross-age children’s
preferences,” Personal and ubiquitous computing, Vol. 17(8), pp. 1775-
1786, 2013.

[57] P. Sengupta, &A. V. Farris, “Learning kinematics in elementary grades
using agent-based computational modeling: a visual programming-based
approach,” In Proceedings of the 11th International Conference on
Interaction Design and Children, pp. 78-87, ACM, June 2012.

[58] P. Sengupta, J. S. Kinnebrew, S. Basu, G. Biswas, &D. Clark,
“Integrating computational thinking with K-12 science education using

agent-based computation: A theoretical framework,” Education and
Information Technologies, Vol. 18(2), pp. 351-380, 2013.

[59] S. Sentance, &S. Schwiderski-Grosche, “Challenge and creativity:
using. NET gadgeteer in schools,” In Proceedings of the 7th Workshop
in Primary and Secondary Computing Education, pp. 90-100, ACM,
November 2012.

[60] S. Simmons, B. DiSalvo, &M. Guzdial, “Using game development to
reveal programming competency,” In Proceedings of the International
Conference on the Foundations of Digital Games, pp. 89-96, ACM, May
2012.

[61] A. Sipitakiat, &N. Nusen, “Robo-Blocks: designing debugging abilities
in a tangible programming system for early primary school children,”
InProceedings of the 11th International Conference on Interaction
Design and Children, pp. 98-105, ACM, June 2012.

[62] B. Tangney, E. Oldham, C. Conneely, S. Barrett, &J. Lawlor,
“Pedagogy and processes for a computer programming outreach
workshop—The bridge to college model,” Education, IEEE
Transactions on, Vol. 53(1), pp. 53-60, 2010.

[63] D. S. Touretzky, D. Marghitu, S. Ludi, D. Bernstein, &L. Ni,
“Accelerating K-12 computational thinking using scaffolding, staging,
and abstraction,” In Proceeding of the 44th ACM technical symposium
on Computer science education, pp. 609-614, ACM, March 2013.

[64] A. Wagner, J. Gray, J. Corley, &D. Wolber, “Using app inventor in a K-
12 summer camp,” In Proceeding of the 44th ACM technical symposium
on Computer science education, pp. 621-626, ACM, March 2013.

[65] H. C. Webb, &M. B. Rosson, “Exploring careers while learning Alice
3D: a summer camp for middle school girls,” In Proceedings of the 42nd
ACM technical symposium on Computer science education, pp. 377-
382, ACM, March 2011.

[66] H. Webb, &M. B. Rosson, “Using scaffolded examples to teach
computational thinking concepts,” In Proceeding of the 44th ACM
technical symposium on Computer science education, pp. 95-100, ACM,
March 2013

[67] L. Werner, J. Denner, M. Bliesner, &P. Rex, “Can middle-schoolers use
Storytelling Alice to make games?: results of a pilot study,”
InProceedings of the 4th International Conference on Foundations of
Digital Games, pp. 207-214, ACM, April 2009.

[68] L. Werner, J. Denner, S. Campe, &D. C. Kawamoto, “The fairy
performance assessment: Measuring computational thinking in middle
school,” In Proceedings of the 43rd ACM technical symposium on
Computer Science Education, pp. 215-220, ACM, February 2012.

[69] L. Werner, J. Denner, S. Campe, E. Ortiz, D. DeLay, A. C. Hartl, &B.
Laursen, “Pair programming for middle school students: does friendship
influence academic outcomes?” In Proceeding of the 44th ACM
technical symposium on Computer science education, pp. 421-426,
ACM, March 2013.

Page 551

978-1-4799-1908-6/15/$31.00 ©2015 IEEE 18-20 March 2015, Tallinn University of Technology, Tallinn, Estonia
2015 IEEE Global Engineering Education Conference (EDUCON)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

