
Could you help me to change the variables? Comparing
instruction to encouragement for teaching programming

Dimosthenis Makris
Ionian University

Corfu, Greece

Kleomenis
Euaggelopoulos

Ionian University
Corfu, Greece

Konstantinos
Chorianopoulos
Ionian University

Corfu, Greece
choko@ionio.gr

Michail Giannakos
NTNU

Trondheim, Norway
michailg@idi.ntnu.no

ABSTRACT

Computer programming has become an important skill and it can
be taught from early school years. Previous research has
developed and evaluated several visual programming tools that
are suitable for computer education in schools. However, little is
known about how pedagogic styles affect student attitudes
towards learning computer programming. This paper reports on a
preliminary study on the influence of alternative teaching styles
on student’s enjoyment and attitude towards computing. Two
groups of twelve students each were asked to revise a computer
game. The traditional instruction group was provided with
detailed information, while the encouragement group was asked to
help the teacher to change the variables of the game. The results
indicate that an encouraging pedagogic style promotes more
positive attitudes towards computer programming and more self-
confidence than traditional instruction. Further research should
repeat the experiment across several weeks for more programming
concepts and should also assess the cognitive benefits.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education, Curriculum.

General Terms

Measurement, Experimentation, Human Factors.

Keywords

Programming, Secondary education, Computational thinking,
Computer education, Scratch, encouragement, confidence

1. INTRODUCTION
For many years computing has been included in the curriculum as
an important discipline in secondary education. Moreover, there
have been several approaches to improve programming literacy in
schools, mostly in terms of visual programming tools.
Nevertheless, recent reports by the Computer Science Teachers

Association [20], and the ITiCSE Working Group: Informatics in
Secondary Education [8] revealed that computing courses face
problems regarding their lack of exposure and motivations. We
suggest that in addition to visual programming tools, educators
should also consider individual learning styles, as well as
alternative pedagogic styles that are better suited to the unique
aspects of computational thinking, such as the creative, tinkering,
and making aspects [3] of the computing culture.

Currently, there are multiple efforts to broaden participation in
Computer Science and introduce computational literacy to young
students [15][17]. Contemporary computer education has
emphasized the consumption (i.e., the use) of technology instead
of the creation and understanding of it [6]. For example, Resnick
[14] has argued that, by learning to program, children are able to
learn in a more meaningful way, which is more motivating and
results in deeper and better learning. They made an analogy with
pianos and stereos. Even though it is easier to play a stereo,
playing the piano enables someone to create, to express
personality, and to develop a deeper relationship with music.

Previous research suggests that visual programming tools provide
a positive experience for first-time programmers. Researchers and
educators have been developing visual programming
environments that are customized to children, such as LOGO [16],
Alice [4], Greenfoot [9] and Scratch [10]. Although there are
several visual programming environments, there is limited
research about the teaching practices that are most effective for
involving students with programming.

In addition to research on tools for ICT education, some studies
have analyzed the pedagogical style. For example, Wick [19]
highlights the influence of the first day of lecture on early
attitudes of computer science students. One of most interesting
pedagogic styles is coming from outside of ICT education. Mitra
and Dangwal [13] proposed to let children learn, on their own,
about basic molecular biology in English (which is not their
mother language) with the help of a friendly mediator, who had no
knowledge of the subject. They found that children performance
was comparable to children who learned the subject from
qualified teachers. Their findings suggest that any topic from
simple internet browsing and language learning, up to molecular
biology might also be facilitated by a friendly and encouraging
mediator. Notably, if the mediators have no knowledge of the
subject matter, it prevents them from delivering the answer to the
students.

The above experiments are part of broader philosophy towards
pedagogy. Mitra [12] has emphasized: “we need real schools, not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WiPSCE ’13, November 11-13, 2013, Aarhus, Denmark.
Copyright 2013 ACM 978-1-4503-2455-7/11/13…$15.00.

factories that convert our children to standard machines. Most
schools today are the product of an expired age; standardized
curricula, outdated pedagogy, and cookie cutter assessments are
relics of an earlier time. Schools still operate as if all knowledge is
contained in books, and as if the salient points in books must be
stored in each human brain -- to be used when needed. Students
are rewarded for memorization, not imagination or
resourcefulness.” As a matter of fact, most schools around the
world teach programming in the aforementioned fashion. Students
learn the principles of computer programming similarly to
History, without the freedom to create something on their own,
without discovering that programming with accessible visual
platforms like Scratch can be creative and amusing.

In our work, we are exploring whether the above encouraging
pedagogic style is applicable to teaching programming in
secondary education. The main role of an encouraging teacher is
to motivate children to continue their learning exploration. From
here on, we refer to this approach as the “Sugata Mitra” style of
teaching. There have been interesting findings on visual
programming tools and on computer education pedagogy, but
these two streams of research have been independent. Overall, we
suggest that the practice of making cannot be independent to the
pedagogy of a making culture.

The research question that guided our study is: “How does the
encouraging style of teaching affect children’s attitude and self-
confidence towards computer programming?

2. METHODOLOGY
We explored young students’ attitude towards alternative teaching
styles for computer programming at a lower secondary education
school (ages 12-15) of Greece (Gymnasium). In particular, we are
comparing the traditional instruction of programming to the
encouragement style, which has been promoted by Mitra [12].
Our sample consisted of 24 students from a Gymnasium and we
employed the Scratch visual programming tool [10]. Scratch is an
educational programming platform that allows users to create
interactive games, animations, presentations, arts, etc., simply by
dragging and dropping command blocks. These blocks can be
handled like pieces of a puzzle and they represent concepts such
as variables, conditions, loops and boolean expressions. Children
can create their own Scratch projects or build upon existing ones,
becoming actual designers of games, animations, and stories. In
this study we employed the openly available Alien Shooter game1,
which can be found in the official Scratch Gallery.

We conducted a between-groups experiment with two groups of
12 students each. The group assignment was done without a pre-
test, because the purpose of the study is to measure attitude and
not cognitive performance. The teacher was the same person for
both groups, and he was knowledgeable about computer education
in general but he was not knowledgeable about the particular
study design and the respective pedagogic issues. Moreover, the
teacher is independent from the researchers and he does not have
any conflict of interest in favor or against one of the methods.

The first group was instructed about programming concepts in
what we refer to as the “Traditional” style. That means that the
teacher used the Scratch tool to demonstrate to the children how
to change variables in the game (the score and the ship-health).
The second group learned about the same programming concepts
in an encouraging style. In this case, the teacher did not provide

1 Alien Shooter game: http://scratch.mit.edu/projects/1785051/

any instruction about the variables theory, but encouraged the
students to change the score and the ship-health features of the
game in Scratch, thus the students indirectly worked with the
same variables concept (Figure 1).

In summary, the ship-health and the score variables were changed
in two ways: 1) the teacher instructed the students how to change
them by demonstration on the video projector, and 2) the students
were encouraged to help the teacher change them by working
individually on their computers (Figure 2).

Figure 1 The score (top-right) and the ship-health (bottom-
left) variables were changed in two ways: 1) the teacher
instructed the students how to change them, and 2) the

students were encouraged to help the teacher change them.
In order to measure children’s attitude towards programming we
adopted the questionnaire proposed by Giannakos et al. [6], which
assesses performance expectancy, satisfaction, self-efficacy,
social influence, perceived behavioral control and behavioral
intention. We also used the Self-Assessment Manikin (SAM) by
Bradley & Lang [1] in order to understand more about students’
affective responses towards the activity. SAM is a pictographic
questionnaire that assesses affective responses in three
dimensions: valence, arousal, and control. The SAM instrument
rates emotion on a scale from 0 to 9, across the two sides of an
emotion: pleasure (sad - cheerful), arousal (quiet - active) and
control (independent - dependent). Moreover, in order to measure
students’ knowledge on the subject, they were asked to answer
questionnaires prior to the learning activities as well as after them.

Figure 2 The task was to change the increment of the variable

3. RESULTS
According to the results from the attitudes and the SAM
questionnaires, the Sugata Mitra group assessed themselves as
having acquired more knowledge about programming. Moreover,
they appeared to have liked Scratch’s environment and enjoyed
the activity more than the Traditional group. Notably, on the
statement “You will continue to study programming” the
Traditional group scored 35% positive answers in contrast to the
80% positive answers of the Sugata Mitra group (Figure 3).
Moreover, on the “You will study programming on a regular
basis” question, the results are similar with 25% positive answers
on Traditional group and 60% on Sugata Mitra.

Figure 3 Results on “You will continue to study

programming”
Regarding the use of Scratch in the classroom as an instrument for
learning programming, the students of the Sugata Mitra group
liked it more and want it to use it again. For the question “You
plan to use Scratch again” only 50% of the Traditional group was
positive, as opposed to Sugata Mitra’s 100%. The same pattern is
observed on the statement “You hope that you will continue using
Scratch at school” with 55% positive answers of the Traditional
group and 100% for Sugata Mitra.

Figure 4 Results on “You plan to use Scratch again”
The results from SAM indicate that students of the Sugata Mitra
group found the activity more enjoyable and arousing. They also
considered themselves to be more independent, which is an

indication of increased self-confidence (Figure 5). Moreover,
before the experiment 90% of both groups were positive that
“they know what programming is”. However, following the
activities, only 45% of the Traditional group were now positive,
as opposed to Sugata Mitra’s 100%.

Figure 5 SAM: Measuring Control between groups

4. CONCLUSION AND DISCUSSION
The findings indicate that the teaching approach influences the
students’ attitude towards the course of computer programming.
In our study, it seems that students in the traditional instruction
group are less likely to get involved with programming in the
future than the participants in the encouragement group, because
their experience was less stimulating. Our findings suggest that
once the students are given an opportunity to be creative and
unique, as well as feel good about their ability to figure things out
on their own, their interest in computer programming increases.

Moreover, the results of the affective response indicate that the
encouragement group was more excited and felt more in control
of the activity. It is worth pointing out that it is unclear whether
the encouragement method might also result in better
programming performance, as measured by computational
thinking tests. However, our study provides evidence that the
encouragement approach to programming with a visual tool
results in a greater intention for future involvement with
programming which the authors feel that is more important in
bringing new people in the field of information technology.

The findings of this study should be interpreted in the light of
some limitations. The study was based mostly on short-term
quantitative data collection from a small sample size, which
entails certain disadvantages on the generalization of the findings.
Moreover, we have performed an experiment that is based on a
very simple concept: changing the variables that hold the score
and ship-health for a video-game. Computational thinking is much
more than variables [2] and computer programming tools like
Scratch can be also used for creating animations and stories, so it
has to be evaluated for those concepts too. Moreover, the Alien
Shooter game is a Space Invaders clone, so it might not be
suitable for some of the individual learning styles.

Although students use computers for many tasks both at home and
at school, the majority of them fail to comprehend what computer
science is and how it relates to computational thinking and
problem solving. Their exposure to computers in school usually
consists of word processors and media presentation tools. Few
secondary education schools have a mandatory (or even an
elective) computer programming course during this crucial time
where students are starting to think about career choices and
making future educational and vocational decisions.

Despite these limitations, the proposed pedagogic method has
generated valuable insights on the notion of encouragement for
teaching programming in secondary education and has opened
new avenues for conducting in-depth studies. In further research,
we plan to repeat the same experiment across multiple weeks of
ICT education with a bigger sample of students and to employ
qualitative data collection methods, such as interviews. Finally,
further research, should also measure the learning performance of
the students. Although the students seem to increase self-
confidence and liking of computer programming through the
encouragement teaching style, it is unclear whether they actually
improve their cognitive skills too.

5. Acknowledgements
We are grateful to the teachers and students for participating in
the study and to XXXX for assisting the preparation of early
drafts of this paper.

6. REFERENCES
[1] Bradley, M.M., Lang, P.J. 1994. Measuring Emotion: The

Self Assessment Manikin and the Semantic Differential.
Journal of Behavioral Therapy and Experimental Psychiatry,
25, 49-59.

[2] Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational
thinking. In Proceedings of the 2012 annual meeting of the
American Educational Research Association, Vancouver,
Canada.

[3] Chorianopoulos, K., Jaccheri, L., & Nossum, A. S. (2012).
Creative and open software engineering practices and tools in
maker community projects. In Proceedings of the 4th ACM
SIGCHI symposium on Engineering interactive computing
systems (pp. 333-334). ACM.

[4] Cooper, S., Dann, W., Pausch, R. 2000. Alice: a 3-D tool for
introductory programming concepts. Journal of Computing
Sciences in Colleges, 15, 5, 107-116.

[5] Ding, W. and Resnik, M. 2013.
http://www.ted.com/talks/mitch_resnick_let_s_teach_kids_to
_code.html (Last accessed: Feb., 2013)

[6] Giannakos, M.N., Hubwieser, P. Chrisochoides, N. 2013.
How Students Estimate the Effects of ICT and Programming
Courses. In Proceeding of the 44th ACM technical
symposium on Computer science education. SIGCSE '13.
ACM, New York, NY, USA, 717-722

[7] Grover, S., Pea, R. 2013. Using a Discourse-Intensive
Pedagogy and Android’s App Inventor for Introducing
Computational Concepts to Middle School Students. In
Proceeding of the 44th ACM technical symposium on

Computer science education. SIGCSE '13. ACM, New York,
NY, USA, 723-728.

[8] Hubwieser, P, Armoni, M, Brinda, T, Dagiene, V, Diethelm,
I, Giannakos, MN, Knobelsdorf, M, Magenheim, J,
Mittermeir, R, and Schubert, S. 2011. Computer
science/informatics in secondary education. In Proc. of the
16th annual conference reports on Innovation and
technology in computer science education - working
group reports. ITiCSE-WGR '11, ACM, NY, USA, 19-38.

[9] Kölling. M. 2010. The Greenfoot Programming
Environment. Trans. Comput. Educ. 10, 4, Article 14 (Nov.
2010), 21 pages. DOI=10.1145/1868358.1868361

[10] Maloney, J., Resnick, M., Rusk, N., Silverman, B.,
Eastmond, E. 2010. The Scratch Programming Language
and Environment. Trans. Comput. Educ, 10, 4, Article 16.

[11] Malan, D. J., Leitner, H. H. 2007. Scratch for Budding
Computer Scientists. In Proceedings of the 38th SIGCSE
technical symposium on Computer science education.
SIGCSE '07. ACM, New York, NY, USA,223-227.

[12] Mitra, S. We need schools… not factories,.
http://www.huffingtonpost.com/sugata-mitra/2013-ted-
prize_b_2767598.html (Last accessed: May, 2013)

[13] Mitra, S., Dangwal, R. 2010. Limits to self-organising
systems of learning—the Kalikuppam experiment, British
Journal of Educational Technology, 41, 5, 672-688.

[14] Resnick, M., Bruckman, A., Martin, F. 1996. Pianos not
stereos: creating computational construction kits.
Interactions, 3, 5, 40-50.

[15] Soh, L. K., Samal, A., Scott, A., Ramsay, A., Moriyama, E.,
Meyer, G., Moore, B., Thomas, W. G. and Shell. D. F 2009.
Renaissance computing: an initiative for promoting student
participation in computing. SIGCSE Bull. 41, 1 (March
2009), 59-63

[16] Solomon, C. J. 1978. Teaching young children to program in
a LOGO turtle computer culture. ACM SIGCUE Outlook. 12,
3, 20–29.

[17] Webb, D. C., Repenning, A and Koh. K. H. 2012. Toward an
emergent theory of broadening participation in computer
science education. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education. SIGCSE '12.
ACM, New York, NY, USA, 173-178.

[18] Weng, J.F., Kuo, H.L., Tseng, S.S. 2011. Interactive
Storytelling for Elementary School Nature Science
Education. In Proc. of the 11th IEEE International
Conference on Advanced Learning Technologies. ICALT
‘11. 336-338.

[19] Wick, M.R. 2007. Bridging the Conceptual Gap: Assessing
the Impact on Student Attitudes toward Programming. In
Proceeding of the 38th ACM technical symposium on
Computer science education. SIGCSE '07. ACM, New York,
NY, USA, 509-513.

[20] Wilson, C., Sudol, L., Stephenson, C., Stehlik, M., 2010.
Running on empty: the failure to teach K-12 Computer
Science in the digital age. ACM, (Last accessed: June, 2013)
http://www.acm.org/runningonempty//fullreport.pdf

