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Contemporary research has explored educational robotics, but it has not examined the development of com-
putational thinking in the context of programming embodied interactions. Apart from the goal of the robot
and how the robot will interact with its environment, another important aspect that should be taken into
consideration is whether and how the user will physically interact with the robot. We recruited 36 middle
school students to participate in a six-session robotics curriculum in an attempt to expand their learning in
computational thinking. Participants were asked to develop interfaces for the remote control of a robot us-
ing diverse interaction styles from low-level to high-level embodiment, such as touch, speech, and hand and
full-body gestures. We measured students’ perception of computing, examined their computational practices,
and assessed the development of their computational thinking skills by analyzing the sophistication of the
projects they created during a problem-solving task. We found that students who programmed combinations
of low embodiment interfaces or interfaces with no embodiment produced more sophisticated projects and
adopted more sophisticated computational practices compared to those who programmed full-body inter-
faces. These findings suggest that there might be a tradeoff between the appeal and the cognitive benefit of
rich embodied interaction with a remotely controlled robot. In further work, educational robotics research
and competitions might be complemented with a hybrid approach that blends the traditional autonomous
robot movement with student enactment.
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1 INTRODUCTION

In recent years, researchers and educators have considered robotics as an inspiring educational
tool to promote the comprehension of science, technology, engineering, and mathematics (STEM)
concepts [6, 18] as well as to foster computational thinking (CT) [8] and creativity. Contemporary
research has introduced robots in the classroom [40], but it has not considered the effects of al-
ternative embodied interactions with them. In a typical educational robotics activity, children are
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asked to enliven the robots by creating the appropriate computer programs [7]. The programmer
has to think mainly about the goal of the robot and how the robot will interact with the environ-
ment. However, there is another important aspect that should also be taken into consideration,
and this is if and how the user will physically interact with the robot. In particular, Alimisis [2]
points out that embodiment is an innovative approach to make robotic activities more approach-
able and meaningful to children. According to Dourish [17] embodiment “is the property of our
engagement with the world that allows us to make it meaningful.”

Additionally, with the rapid development of digital technologies, such as mobile devices, touch-
screens, and computer vision, a wide gamut of interfaces is provided to users. Children can interact
with digital information more naturally and physically [30], using personal devices that are ap-
pealing to them. Putting forth the notion of “embodied interaction” [17], we are moving away from
the conventional keyboard and mouse input devices to touch, speech, and hand and full-body in-
terfaces [36]. The user is allowed to act directly in the physical world, as the human body becomes
the input for the interaction.

Recently, there has been a strong push to exploit these interfaces in science and computing
education triggered by the views of embodied cognition researchers that physical interactions with
the environment through sensorimotor modalities (touch, movement, speech, smell, and vision)
are essential factors in the construction of knowledge [4, 23, 59]. We are motivated by embodied
learning findings that regard a broad spectrum of human motor-perceptual skills, which reach
beyond the traditional desktop metaphor and keyboard-mouse as input devices. For this reason,
we set out to investigate whether various programming activities to control a robot using diverse
interaction modalities, with a different level of embodiment, can affect students in exploring CT
concepts. One factor that determines the level of embodiment is the degree of bodily movement
activity. For instance, full-body movement entails a higher level of embodiment compared to hand
micro-movements [31, 37].

The vision of Papert [49] and Kay [3] for introducing powerful ideas (math and science concepts)
through programming was the main inspiration for creating the intervention. Expanding their
views “beyond the screen” by targeting a robot is one aspect of our study. Another aspect concerns
the dimension of embodiment and its connection to CT performance. Similarly to Kafai et al. [32],
we studied and assessed the development of CT by applying Brennan and Resnick’s framework
[9]. Our research questions centered on these major topics:

e Intention: Did the robotics curriculum have any influence on students’ perception of
computing?

e Comprehension: Were there any differences in the development of students’ CT skills that
could be attributed to the different levels of embodiment?

Therefore, the primary contribution of our research is studying alternative types of human-
robot interaction in the contexts of embodied learning and computing education. The rest of the
article is structured as follows: In the next session, we present the related work; in Section 3,
we describe the methodology; in Section 4, we present the results; in Section 5, we discuss the
findings, implications, and limitations; and, finally, we summarize the conclusion and future work
in Section 6.

2 RELATED WORK
2.1 Embodied Learning

Existential phenomenologists such as Heidegger [28], Merleau-Ponty [41], and neurologists such
as Damasio [14] reject Descartes’s dualism of mind and body, arguing that “thinking does not
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occur separately from being and acting” [17]. Based on this premise, theories of embodied cog-
nition emphasize [4, 23, 59] the importance of perception in conceptual learning by suggesting
that knowledge is intimately tied to sensorimotor actions. The mind no longer has been treated as
separate from the body, and it is perceptual rich experiences that shape cognitive processes and
allow individuals to construct meaning and understanding of the world [17].

An issue is how precisely perceptual rich experiences contribute to knowledge. Evidence about
the mechanisms underlying embodied learning can be drawn from the theories of working mem-
ory and cognitive load [63]. It is thought that not only each sensorimotor modality (visual, audi-
tory, and tactile) has its working memory [42] but also acts as an individual source of perceptual
experiences [26]. Specifically, when multiple modalities are employed stronger memory traces are
produced, and more abundant knowledge structures are created, compared to the use of a single
modality. Hence, learners would be able to retrieve the multimodal knowledge representations
more efficiently in the future. Second, by combining the tactile channel with the visual and au-
ditory ones, the mental energy required to process a given amount of information is distributed
across the modalities, and thus the cognitive load imposed to the learner is reduced. In sum, per-
ceptual rich experiences not only may help individuals learn conceptual content faster and easier
but also in a more in-depth manner.

Educational and developmental learning theories have also acknowledged the significance of
sensory and motor actions of the human system in the learning process and the construction of
knowledge [15]. For example, Maria Montessori [45] believed that through movement learners
interact with the environment, and it is through these interactions that they eventually acquire
even abstract ideas. From a theoretical perspective, embodied learning is also related to learning
theories favoring hands-on activities and child interaction. According to Piaget [51] and Papert
[48], a fundamental tenet of learning is people’s actions, as they construct knowledge and form
the meaning of the world by actively interacting with learning objects.

However, what distinguishes embodied learning from other hands-on learning theories is the
dimension of “gestural congruency” [36]; that is, in order a perceptually rich learning experience
to be effective, actions of the body need to be congruent to the mental operations and represen-
tations of the concepts to be learned [31, 46, 53]. A representative example that highlights the
significance of “gesture congruency” is Johnson-Glenberg’s et al. [31] study for learning about
centripetal force. Specifically, having participants swing a trackable object overhead instead of
using a mouse interface to control the simulation is a movement that maps coherently onto the
learning domain [37] but also coincides with real-life experiences [31]. It is essential, therefore, to
consider not only methods that make use of physical interactions but also how meaningful are the
types of student interactions to the subject matter.

2.2 Level of Embodiment

The embodied approach [52] has been used to cover the learning of abstract materials in a wide
range of topics that extend from science [26, 31, 35, 37], technology, engineering, and mathematics
[1,57] to CT [13, 21, 50].

Johnson-Glenberg et al. [31] defined four levels of embodiment, comprising three factors: senso-
rimotor engagement, gestural congruency, and perceived immersion. According to their proposed
taxonomy, in the first level, all three factors are low, so the learner usually observes the learning
material in a desktop or tablet computer with minor sensorimotor engagement (mouse-clicking or
key-pressing). The next level requires a higher degree of motoric engagement such as movement
of the arm or fingers. In the third level, the full-body can act as input for the interaction, but the
user remains in one place, while the fourth and highest level involves full-body interaction with
locomotion and a high degree of gestural congruency and immersion.
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Computer simulations that make use of gestures and touch sensorimotor input [11, 26] have
been considered as an innovative approach to supporting the teaching of abstract scientific
concepts. Specifically, in a study conducted by Chan and Black [11] students investigated the
functional relationship between the gravitational and kinetic energy through a roller coaster
simulation. Participants assigned in the direct manipulation condition were asked to control the
position-height of a roller coaster car and at the same observed the changes in its kinetic and
potential energy. They demonstrated better recall, problem-solving and transfer abilities than
the students assigned to less disembodied conditions who just watched the animation without
user control. Similarly, Han and Black [26] used simulations augmented with haptic feedback to
enhance elementary students’ understanding of the movements of gears. Results of their study
indicate that the augmented haptic simulations (force and kinesthetic and purely kinesthetic)
provided richer perceptual experiences to students than the equivalent non-haptic simulation.

Activities involving a higher level of embodiment, such as full-body activity, also provide a
strong foundation for fostering embodied learning as users can interact with the digital informa-
tion through natural physical movement. The use of full-body interaction for learning physics
principles, such as gravity force and planetary motion, through a mixed reality simulation, was
the subject of research conducted by Lindgren et al. [37]. Results of the study indicate that students
who used a full-body mixed reality simulation game obtained more knowledge about force and mo-
tion, showed higher levels of engagement, and more positive attitudes towards science compared to
students who used the desktop version of the same simulation game. Similarly, Johnson-Glenberg
et al. [31] used a mixed reality simulation to facilitate college-age participants’ understanding of
centripetal force. The authors found higher long-term learning gains in physics for the subjects
assigned to the “high embodiment” condition (swinging a tangible trackable object overhead) com-
pared to those assigned to the “low embodiment” condition (using a mouse as interaction tool). It
is essential, therefore, to consider the role that level of embodiment plays in learning and its place
in the embodied theory of education.

2.3 Computational Thinking and Embodiment within Robotics

Ever since Papert [48] introduced the concept of CT and until recently, CT [60] was regarded as
a highly intellectual cognitive activity. In particular, Wing [61] described CT as “the thought pro-
cesses involved in formulating problems and their solutions so that the solutions are represented
in a form that can be effectively carried out by an information-processing agent.” Subsequently,
Brennan and Resnick [9] broaden the CT term, which encompasses three dimensions: computa-
tional concepts, practices, and perspectives. Computational concepts refer to the fundamental ele-
ments that are commonly present in many programming environments such as sequences, loops,
parallelism, events, conditionals, operators, and data. Computational practices are activities that
may occur during the process of construction, such as experimenting and iterating, testing and
debugging, reusing and remixing, and abstracting and modularizing. Brennan and Resnick [9] ar-
gued that “computational practices focus on the process of thinking and learning, moving beyond
what you are learning to how you are learning.” On the other hand, computational perspectives
capture young learners’ shifting viewpoints about themselves (expressing), their relations with
others (connecting) and the world (questioning), as they engage in CT activities.

Some educators and researchers, embracing the embodied cognition view, believe that CT might
be enhanced if it is channeled through rich perceptual experiences. A practical learning approach,
referred to as direct embodiment, is to have students enact with their bodies the programming
scripts before creating the program. For example, Fadjo [21] found that having students physi-
cally embody the actions presented in pre-defined instructional materials could positively affect
the development of their CT skills as they created a video game in Scratch. Notably, Fadjo reported
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that the effect of physical embodiment on the development of CT skills became less pronounced
as the scripts in the instructional materials became more complex. Surrogate embodiment, where
learners manipulate and observe an external representative, is an alternative practice for develop-
ing programming skills [20]. For instance, Sung et al. [55] studied how direct and surrogate em-
bodiment activities with a different level of embodiment (full vs. low embodiment) can improve
students’ mathematical understandings and programming skills. She found that the surrogate con-
dition with full embodiment had the greatest impact on engagement and learning outcomes. Other
scholars [13, 50] examined how embodied interactions in a virtual environment that processed stu-
dents’ dance movements could enhance computational learning.

Besides, using virtual environments [13] and visual programming tools such as Scratch [50, 55],
a growing number of educators and researchers have considered educational robotics as a promis-
ing field for applying the embodied cognition view, mainly in the context of primary school ed-
ucation. Specifically, Lu et al. [38] examined how direct and surrogate bodily experiences in a
robotic workshop can influence elementary students’ understanding of programming concepts.
Participants were asked to act out with their bodies (direct embodiment) or observe the teacher
acting out (surrogate embodiment) the robot’s movements and then program the robot to make
the same moves. The results indicated that students assigned to the direct embodiment condition
comprehended the programming concepts faster. Similarly, Sung et al. [56] and colleagues inves-
tigated how embodied experiences can affect lower elementary school students’ problem-solving
skills. Students, in the high embodiment condition, were asked to enact the robot’s movements
through full-body interaction before building and programming the robot, demonstrated better
problem-solving skills than those in the low embodiment condition (using hand gestures).

Nevertheless, previous works have not considered computer programming and the development
of CT in the context of embodied interaction with educational robotics. For this reason, we im-
plemented educational robotics activities within a secondary education setting for studying the
development of CT, but we adopted a different embodied learning approach compared to previous
studies. Instead of asking students to enact the robots’ moves before programming it, we asked
them to program human-robot interfaces with a different level of embodiment. In this way, we
expect to find a connection between embodiment and the development of CT skills and draw some
conclusions about students’ perception of computing.

3 METHODOLOGY
3.1 Subjects

We recruited 36 middle school students, aged between 14 and 15 years, with little to no prior pro-
gramming experience to participate in a six-session robotics curriculum. The sample was White,
relatively equally divided by sex (17 girls, 19 boys), and from lower to middle socioeconomic sta-
tuses. We randomly selected the participants from the third-level class of a middle school. Students
worked in pairs in each of the activities. The criteria for matching the pairs of students were their
skills and expertise and existing friendships. Thus, we created 15 same-gender and 3 mixed-gender
pairs. Participants were not self-selected into the curriculum, as is the case in most after-school
robotic workshops. Nevertheless, they were asked if they would like to participate in the study
and their parents were informed and asked to give their permission by signing the necessary
consent form.

3.2 Robotics Curriculum

The curriculum was divided into six individual sessions. In Table 1 we present what kind of appli-
cations students were asked to create and the CT concepts they explored during the sessions. The
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Table 1. Overview of the Activities and the CT Concepts Introduced in Each Session of the Curriculum

Session | Activity Title Students should create an | Computational Thinking

application... Concepts
to control the robot with
1 Touch Control | their fingers by touching Events, Sequences, Data

their mobile phone screens
to control the robot with
hand gestures by rotating

2 Hand Control their mobile phone devices,
utilizing the phone’s
orientation sensor

to control the robot through
speech commands, utilizing Events, Sequences, Data,

Events, Sequences, Data,
Conditionals, Operators

3 Speech Control speech recognition Conditionals, Operators
technology
to control the robot with Events, Sequences,

4 Body Control full-body gestures, using Parallelism, Loops, Data,

computer vision technology | Conditionals, Operators
to integrate Artificial
Intelligence to the robot

5 Line Follow so that it could move
autonomously on the track
following a black line

Events, Sequences, Data,
Conditionals, Operators

Sequences, Loops, Events,
Parallelism, Conditionals,
Operators, Data

to navigate a robot on a fixed

6 Project track and hit an object

first five sessions followed a similar basic format: (1) Building the User Interface (UI). A template
application and guiding instructions were given to students to add the necessary UI elements,
(2) Programming the application’s behavior, and (3) Going further by enhancing the basic applica-
tion with additional features such as variable speed. In the final session, students applied the pre-
viously acquired programming knowledge to a semi-open problem-solving task. We asked them
to create a program so that they could successfully navigate the robot on a fixed track and hit
an object placed at a predefined spot with its robotic arm. No instructions were given to students
on the final project, and they were prompted to program any interface (touch, hand or full-body
gestures, speech, autonomous) they preferred. Moreover, they were allowed to “remix and reuse”
[9] code from the previous sessions. Thus, the final project session followed a constructionist ap-
proach to learning and served as the condition for assessing learning outcomes of the intervention
(Figure 1).

It should also be noted that each interface has certain affordances and limitations [9] and these
may have influenced the balance between the activities. Nevertheless, we aimed to keep the balance
between the different conditions but without controlling out their respective affordances [65].

The duration of each of the first five sessions was about 45 minutes while the final project
activity lasted from 45 to 90 minutes. All activities were tested in a two-phase pilot study. Data
collected during the pilot study helped us to refine the instructional material and the measuring
instruments. The same researcher conducted both the preparation of the instructional material
and the tutoring of the courses.
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Fig. 1. Controlling a robot in the final session with touch and speech commands (left), and full-body
gestures (right).

Table 2. Overview of the Interaction Modalities, Level of Embodiment, and
the Development Platforms in Each Session of the Curriculum

Activities Interaction Modalities | Level of Embodiment | Development Platform
Touch Control Touch First Level App Inventor
Hand Control Hand Gestures Second Level App Inventor

Speech Control Speech First Level App Inventor
Body Control Full-Body Gestures Third Level ScratchX
Line Follow Artificial Intelligence No Embodiment App Inventor
Project Students’ Selections Students’ Selections App Inventor or ScratchX

3.3 Materials

We employed App Inventor! [24] as the development platform in the sessions that involved mobile
technology and students used their own mobile phones. For the session that involved full-body
interaction, ScratchX? was employed as the development platform supported by the Kinect sensor
for tracking the body [29].

The interaction modalities varied in the level of embodiment [31] (Table 2). Specifically, the
modalities used in the Touch Control and Speech Control activities we can assume they belong in
the first level, those in the Hand Control in the second level and those in the Body Control in the
third level. The Line Follow is considered to be the activity with no embodiment.

The robots chosen for supporting the curriculum were Lego Mindstorms.®> Both App Inventor
and ScratchX programming environments have the potential to be used for programming the Lego
robots, and this was the main reason for their selection. Although there were some differences in
the layout (e.g., menus, tabs) of the visual blocks-based programming environments, the coding
area was very similar and based on the idea of snapping blocks together.

The objective was to have students program human-robot interfaces in the desktop computer,
then to carry out actions with a different level of embodiment, such as touch, speech commands,
hand, and full-body gestures, and observe the consequences of their actions in the kinematics of a

! App Inventor: http://appinventor.mit.edu.
2ScratchX: http://scratchx.org/.
3Lego Mindstorms: https://www.lego.com/en-us/mindstorms.
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Fig. 2. Block diagram showing an overview of the interaction modalities, the input devices, the development
platform, and the target platform.

robot (Figure 2). The spatial location of the output in relation to the input, referred to as mapping
[39], was considered to be discrete as the actions for triggering the effect were performed either in
the mobile phone or in free space (tracked by Kinect), separately from the target platform where
the reaction took place. In other words, students controlled the robots through teleoperation. It
should be emphasized that with the full-body interface students carried out actions directly in the
physical world, as their bodies were the input for the interaction, while in the other cases they
acted through another device (mobile phone).

3.4 Measuring Instruments and Data Analysis

For the study, we collected and analyzed both qualitative and quantitative data. Concerning the
quantitative data, the students filled out brief pre-test and post-test questionnaires. The pre-test,
before the programming activities, consisted of a five-level Likert questionnaire that recorded stu-
dents’ prior experience with programming, their perception of computing, robotics, and mobile
development. The post-tests, after the programming activities, included a five-level Likert ques-
tionnaire that recorded a change of students’ perceptions. In short, with these questionnaires, we
aimed to capture the shift in participants’ computational perspectives [9].

Regarding the qualitative data, we manually analyzed students’ projects in the final session
for assessing the development of CT. Here, we focused our analysis on the first dimension in
Brennan and Resnick’s [9] CT framework: computational concepts. The projects were graded based
on a rubric used for grading student-made computer game projects [58]. The rubric was appropri-
ately adjusted to fit the current intervention characteristics. According to Werner et al. [58], game
programs are composed of programming constructs, pattern, and mechanics. Constructs are the
elementary pieces of code that are accessible in a programming environment. When multiple pro-
gramming constructs are combined programming patterns are created. Patterns are higher-level
blocks that create additional program functionality. Additionally, when construct and pattern are
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put together, mechanics are formulated. Mechanics are defined as a variety of actions, behaviors,
and control mechanisms used to support user interaction. By applying this framework in our study,
we attempted to measure the correct use of programming constructs and patterns as the produced
mechanics were limited to the robot navigation, the robotic arm control, and the power-speed con-
trol mechanisms. In the appendix, we provide some examples of what constitute block commands,
constructs, patterns, and mechanics in the programs that the students created, since these are the
primary metric of evaluation.

Given the fact that no single approach is sufficient [9] to have a more comprehensive and
accurate view of students’ learning outcomes we additionally employed a 30-minute plus semi-
structured interview that gave participants a chance to describe not only their projects but also
their experiences. They were encouraged to explain their projects and justify the selections they
made, whether they would be interested in participating in programming activities in the future,
what extensions did their experiences lead them to imagine, what kinds of problems did they run
into, whether their ideas about computer science had changed, and whether the curriculum had
influenced their future goals.

Finally, students’ on-screen activity was recorded by Camtasia* capture to gain an overview of
their computational practices, which constitute the second dimension in Brennan and Resnick’s
[9] CT framework. In one of the workstations, a webcam with a microphone was used for video
and audio capture the participants. In the other workstation, a microphone was used to capture
students’ conversations. The transcripts from students’ on-screen activity in the final session were
coded by two coders. The first coder was one of the authors and the second was a computer science
teacher with 12 years of teaching experience in middle school. An intraclass correlation coefficient
was computed to assess the agreement between the coders. Results indicated that the inter-rater
reliability was excellent: ICC = 0.98. The overall internal consistency was also excellent with a
Cronbach’s alpha value of a = 0.98. We employed Transana® software to transcribe, code, and
analyze the interviews and the Camtasia captured data.

First, students filled out the pre-test questionnaire at their convenience and afterward, on dif-
ferent days, worked in pairs on each of the activities. After the completion of the curriculum, the
post-test questionnaire was filled out, followed by the interview. Students answered the question-
naires individually and the questions in the interview in pairs.

4 RESULTS

We applied Brennan and Resnick’s framework [9] for assessing the development of CT. Each of
the three computational dimensions (concepts, practices, and perspectives) is discussed in detail
in the following subsections.

4.1 Computational Concepts

First, we manually analyzed all projects in the final session by measuring the correct use of com-
putational concepts and graded them according to the rubric described in Section 3.4.

In an attempt to evaluate the validity of the rubric we first examined the correlation coefficient
between the number of total block commands, constructs, and patterns used. Table 3 shows the
Pearson’s correlation coefficient between the three variables. As expected, constructs were signif-
icantly correlated to the number of total blocks used, r, = 0.628, p = 0.005. While patterns were
significantly correlated to constructs, r, = 0.630, p = 0.005, but not to the total blocks, r, = 0.362,

4Camtasia: https://www.techsmith.com/video-editor.html.
Transana: https://www.transana.com/.
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Table 3. Correlation Coefficient between Total Blocks, Constructs, and Patterns
Total Blocks Constructs Patterns
0.628"** 0.362 ns
Total Blocks 1
[0.149, 0.890] [-0.186, 0.771]
0.630***
C t t 18 1
onstructs [0.291, 0.836]
Patterns 18 18 1
ns = not significant (p > 0.05), *p < 0.05, **p < 0.01, ***p < 0.001. BCa bootstrap 95% Cls
reported in brackets.
Computational Sophistication
37,3
40 ’
35,8
35 33,5 33
3 30
oD
= 25
()
Z 20
g 15
]
= 10

A

Body
(N=6)

Interaction Modalities

s

Multimodal
(N=3)

Hand
(N=2)

Touch
(N=5)

Autonomous
(N=2)

# Programming Constructs # Programming Patterns

Fig. 3. Mean averages of the used programming constructs and pattern segregated according to the inter-
action modalities selected for controlling the heading of the robot.

p = 0.14. Using more block commands does not imply an increase in the numbers of patterns. The
above can serve as an indication that the rubric was appropriate.

Afterward, we investigated the mean averages of the used programming constructs and patterns
according to the interaction modalities selections that students made while dealing with the robot
navigation programming mechanism (Figure 3). It should be noted that three groups of students
chose multiple types of interactions (multimodal) for navigating the robot. The first group com-
bined touch with hand gestures, while the other two groups combined artificial intelligence with
touch.

The Kruskal-Wallis non-parametric test was used to assess statistical differences in constructs
and patterns among the projects, due to the small and unequal sample size. According to the
Kruskal-Wallis test, there was a statistically significant difference in patterns H(4) = 13.15, p =
0.011. Pairwise comparisons with adjusted p-values showed that the difference was significant
between the projects that students used the full-body interface and the Autonomous projects
(p = 0.033). Nevertheless, the above results should be read with caution, as the group sizes were
unequal. For this reason, we also employed the Mann-Whitney non-parametric test for compar-
isons between the touchscreen interface projects and the full-body ones, as the sample groups
were similar (N = 5 and N = 6 respectively). Constructs in the Touch projects (Mdn = 35.80) did
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Table 4. Percentage of Time Spent in Each Computational Practice Segregated
According to the Interaction Modalities

Abstracting & ) Experimenting | Reusing & Testing &
.. Coding . .. .

Modularizing & Iterating Remixing | Debugging
Touch 25,5% 0,8% 15,6% 26,0% 32.1%
Hand 33,4% 8,6% 14,5% 22,5% 21,0%
Body 8,5% 25,1% 19,1% 16,8% 30,4%
Autonomous 25,3% 2,5% 34,7% 11,0% 26,5%
Multimodal 16,9% 16,4% 16,1% 20,2% 30,3%

not differ significantly from constructs in the Body projects (Mdn = 31.50), U = 4.00, z = —2.04,
p =0.052, r = —0.61. However, Patterns in the Touch projects (Mdn = 14.80) were significantly
higher than patterns in the Body projects (Mdn = 8.00), U = 0.00, z = —3.03, p = 0.004, r = —0.91.
In other words, higher embodiment levels led to projects with overall lower computational
sophistication.

4.2 Computational Practices

We have also attempted to analyze students’ computational practices by observing the problem-
solving processes during the final session of the robotics curriculum. The transcribed on-screen
activity of the eighteen groups was coded, by the two individual coders, according to the four
computational practices listed by Brennan and Resnick [9] and the coding practice. We calculated
the time spent in each computational practice, and we presented the average percentage duration
of the two coders’ judgments in Table 4.

The Kruskal-Wallis non-parametric test was used to assess statistical differences in the percent-
age of time devoted to each computational practice. According to the Kruskal-Wallis test, there was
a statistically significant difference in the abstracting and modularizing practice H(4) = 12.01, p =
0.017. Pairwise comparisons showed that students who programmed the full-body interface spent
significantly less time in abstracting and modularizing compare to those who programmed the
touchscreen interface (p = 0.009), those who programmed the hand gesture interface (p = 0.029),
and those who programmed the robot to move autonomously on the track (p = 0.006). Significant
difference was also found in the coding practice H(4) = 13.80, p = 0.008. Pairwise comparisons
with adjusted p-values showed that students who programmed the full-body interface devoted a
significant amount of their time in coding compared to those who programmed the touchscreen
interface (p = 0.005). Similarly, we employed the Mann-Whitney non-parametric test for compar-
isons between the touchscreen interface projects and the full-body ones. Concerning the abstract-
ing and modularizing practice, the percentage time spent in the Touch projects (Mdn = 25.50) was
significantly higher than the percentage time spent in the Body projects (Mdn = 8.50), U = 2.00,
z=-2.37, p=0.017, r = —0.71. Concerning the coding practice, the percentage time spent in
the Touch projects (Mdn = 0.80) was significantly lower than the percentage time spent in the
Body projects (Mdn = 25.10), U = 20.00, z = 2.75, p = 0.004, » = 0.83. In other words, higher em-
bodiment levels led students to devote more time in coding and less time in abstracting and
modularizing.

The second step in our analysis was to compare the computational practices of two groups
of students. The first pair of students produced the most sophisticated project (Constructs =
48, Patterns = 20), while the second pair produced the least sophisticated (Constructs =
32, Patterns = 8). The first group selected a multimodal interaction style for navigating the robot.
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Table 5. Students’ Perspectives about Themselves before and after the Curriculum

Pre-Test (N = 36) | Post-Test (N = 36)
Computational Perspectives

Mean SD Mean SD
How interested are you in computing education? ns 3.33 1.069 3.44 1.252
How difficult do you think computer programming is? ns 3.36 0.931 3.14 1.046
How many programming skills do you think you have?* 2.25 0.770 2.86 0.899
Would you like to learn programming in the future? ns 3.47 1.082 3.25 1.180
Would you like to create mobile applications in the future? ns 3.50 1.207 3.36 1.437
Would you like to build and program robots in the future? ns 3.22 1.333 3.19 1.191

ns = not significant (p > 0.05), “p < 0.05.

For moving the robot forward and backward, they programmed an orientation-based interface, and
for turning the robot right and left, they used a touchscreen interface. A power slider was used for
changing the speed of the robot and a speech interface for triggering the movement of the robotic
arm. The second group developed full-body interfaces for controlling the heading of the robot and
its robotic arm, and did not program a speed control mechanism. The purpose of the comparison
was to illustrate the clear differences in the two groups’ strategies and the consequences of these
strategies. Thus, this comparison may partly explain the observed differences in the time spent in
each practice.

Specifically, both groups used extensively reusing and remixing for building their projects. How-
ever, we observed different strategies [44] between the two groups. The more competent students
reused large parts of the code that was available from the previous sessions and afterward remixed
them by removing the unnecessary parts. Thus, they followed an abstract way of developing their
project. On the other hand, less-competent students followed an additive way as they developed
their project step by step by reusing, remixing, and editing small parts of the code. They developed
a little then they try it out and thus constructed their project in small steps through incremental
and iterative cycles. This practice (being incremental-iterating) was not so dominant in the op-
posite group. A possible explanation for this phenomenon is that more competent students had a
more transparent view from the start what elements needed for their projects, where they should
go and what they should do. Additionally, we noticed that they organized their scripts in ways that
made sense not only to them but also to others. In general, they spent more time in abstracting
and modularizing strategies compared to less competent students. Finally, as noted in other stud-
ies [32] we also observed that both groups struggled with testing and debugging. However, and
in this case, there were differences between the strategies [22] of the two groups. Correctly, the
more competent students read their scripts thoroughly first to identify the cause of the problem
and then made targeted modifications and tests to debug their projects. On the other hand, less
competent students adopted less sophisticated strategies such as tinkering, making small changes
in the scripts, and testing again and again until their project worked as expected.

4.3 Computational Perspectives

Finally, we measured students’ perceptions of computing before and after the curriculum
(Table 5). We first performed the Shapiro-Wilk test to assess normality and as the data were
not normally distributed, we used the non-parametric Wilcoxon signed-ranked test to determine
whether there was a significant change in students’ perspectives. The results indicated that partic-
ipants reported having significantly more programming skills after (Mdn = 2.86) the curriculum
than before (Mdn = 2.25), T = 238, p = 0.009, r = 0.31. The differences in the other cases were not
significant.
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The qualitative data from the interviews provided additional insight into the findings that
emerged from the questionnaires. As students were not self-selected to participate in the curricu-
lum, we noticed two different approaches. On the one hand, students with limited, or no interest
in computing education and programming before the curriculum reported that although after the
treatment they had a more positive view, this experience was not strong enough to change their
plans. For example, Athena said, “I was not interested in computing education at all before this
experience, but now I like it a bit more. Nevertheless, I do not think that there is a shift in my
future interests as I have already decided what I will do in the future.” On the other hand, we had
students with some interest in computing education who did not have the opportunity to partic-
ipate in robotics activities in the past. For those participants, the curriculum had a strong effect
on their motivational interest. For instance, Emanuel pointed out that “I had some thoughts to get
involved with programming and this experience inspired me for my future endeavors.”

Besides participants’ views about themselves, we were also interested in the ideas that this
embodied robotics experience led them to imagine. We asked them what kind of input devices
they would like to use by creating the appropriate interfaces. Most students wanted to program
a joystick-based interface, while others thought that it would be nice to use the GPS sensor or a
camera embedded in the robot. “I wish I could control the robot with my mind, but I do not know
if this is possible,” Petros said [12]. Concerning the target platform, the majority reported that
they would prefer a different robot and especially a humanoid robot that could mimic their body
movements and could speak. Others noted that they would like to create mobile applications to
control drones, cars or home appliances, such as TV sets. For example, Maria said, “I use my phone
to stay connected with my friends. It never crossed my mind that I could use it in this way.” Last,
we asked them what kind of robotics challenges they would like to experience in the future. They
reported that they would prefer more competitive robotics activities, such as racing with others
on a multilane track, sumo-fighting [34], or football-playing [19].

5 DISCUSSION

This study sought to exploit the synergy between embodiment and educational robotics. Through
a series of embodied robotics activities, we introduced computational concepts to children while
at the same time examined their computational practices and perceptions of computing. We gave
a problem-solving challenge to students with specific requirements: to navigate a robot on a fixed
track and hit an object placed at a predefined spot with its robotic arm. Students adopted vari-
ous interaction modalities, with a different level of embodiment, while building the interfaces for
controlling the heading, the arm, and optionally the speed of a robot.

5.1 Embodiment and Development of Computational Thinking

Overall, although participants felt more confident about their programming skills after the robotics
curriculum, the results indicate that our approach did not make a significant difference in their
perceptions of computing (Table 5). This finding may be explained by the fact that participants
were not self-selected in the course and the relatively short intervention. As Witherspoon et al.
[62] argue it may require a considerable amount of time to cause a significant change in students’
motivational interests. Nevertheless, it was encouraging to see how this experience led students
to gain a new perspective about themselves and the technological world that surrounds them.
Perhaps the most significant finding that can be drawn from our study is the correlation be-
tween the level of embodiment and CT performance. Our analysis indicates that students who
used combinations of low embodiment interfaces (touch and multimodal) or interfaces with no
embodiment (autonomous) while developing the programming mechanisms, produced the most
computationally sophisticated projects and adopted more sophisticated computational practices
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during the problem-solving challenge. On the other hand, students who used interfaces with a
higher level of embodiment, such as full-body interfaces, not only produced the least sophisti-
cated projects but also utilized less sophisticated computational strategies.

A possible explanation for the above finding comes from studies of embodied learning in the
domain of mathematics [57]. Mainly, the use of fingers to count and calculate, defined as embodied
numerosity [43], reflect an illustrative case of embodied cognition. For instance, it is quite common
to observe novice learners, as they get involved in abstract numerical tasks, to utilize their fin-
gers, thus grounding cognition in bodily experiences and reducing in this way the cognitive load
imposed to them. As learner expertise increases, mental representations become more abstract
and simplified [47, 52]. Thus, experts process information in a more intangible and disembodied
manner.

Maybe we are witnessing a similar phenomenon in the computational thinking domain. Specif-
ically, less competent students might have preferred a higher level of embodiment, while more
competent students moved to more disembodied and abstract CT. Some researchers have suggested
that higher embodiment levels are correlated with higher learning performance, while others ar-
gue that the opposite is true: Higher embodiment levels might lead to cognitive overload and thus
to lower learning gains [54]. Perhaps higher levels of embodiment enabled less competent learners
to offload cognition to the perceptual system by physically acting out the abstract computational
concepts. Notably, as expertise increased the need to perceptually ground the computational con-
cepts in high bodily activity diminished and CT become more intellectual and abstract. In other
words, as mentality develops children move from the body dimension to the visual and finally to
the symbolic one [33].

However, there is another possible explanation for the above finding. Although we have at-
tempted to keep the balance between the conditions, each input has specific affordances, which
may affect an individual’s ability to perform optimally at some tasks [10, 64]. Specifically, the
more embodied interface might have required additional motor-cognitive coordination and the
involvement of bigger muscle groups [64] than fingers and hand gestures. This substantial effort
for achieving adequate motor precision to control the robot might have added cognitive load to
students [54] influencing their ability to write a more sophisticated program. In other words, in-
terface usability might have had an impact on CT performance.

Given the equivocal nature of the finding, only further investigation will allow us to provide
a conclusive explanation of why higher levels of embodiment led to lower computational
sophistication.

5.2 Implications for Educational Robotics and Computational Thinking

The current study provides some significant implications for teaching abstract concepts and for
applying the embodied approach to the field of educational robotics. For instance, teachers should
design and incorporate embodied activities in their classes with varying levels of embodiment
to provide alternative learning opportunities for all students, regardless of their mental status.
Thereby, less competent students will be able to sense and feel with their bodies the concepts, while
more competent students will be able to proceed to more intellectual learning stages. Additionally,
the interplay between interface usability, motor effort, cognitive load, and learning performance
should also be taken into consideration.

Within the domain of robotics, the current robotics curriculum also has some strong impli-
cations for how robotics can be taught in classrooms, workshops, and competitions. From the
time that Papert [48] first introduced the Logo programming language and the turtle robot to the
classroom, a considerable research effort has evolved in an attempt to invent new educational
robotics technologies as well as to develop new innovative pedagogical methods. Nowadays,
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educational robots are not only meant to draw trigonometric shapes on the floor. Equipped with
numerous sensors and actuators, that allow them to interact with the physical environment, they
are capable to move autonomously and to perform various tasks as long as they are properly
programmed. Previous well-established educational practices promote either the physical enact-
ment of the problem-solving steps through role-playing activities (the learner enacts the robots’
moves) or the manipulation of an external representative (the learner observes the teacher or
another student acting out the robots’ moves) before creating the program [21, 38, 56]. However,
with our approach students are meant to interact with the robots, as their body movements
transform directly, through programming, into commands. Thus, participants are able to enact
the computational concepts as they carry out physical actions to control the robot synchronously.
We suggest that a robotics curriculum can be significantly improved regarding content, cogni-
tion, and motivational interest if the activities involve embodied experiences. In this way, educa-
tional robotics curriculums will become more approachable and meaningful to children [2].

5.3 Limitations

A limitation of the current study was the relatively small sample that prevented us from using
parametric statistical testing; we analyzed only eighteen projects as the 36 students worked in
pairs. Two reasons for the limited sample size were the duration of the robotics curriculum and
the fact that the study was conducted in a formal classroom environment. Another limitation is
that participants dealt with only three programming mechanics during the problem-solving task
and that might have constrained their creativity. A third limitation is that we mainly employed
project-based assessment for evaluating participants’ fluency with particular computational con-
cepts. Although analyzing young learners’ projects is considered to be a meaningful form of per-
formance assessment [25], this method of evaluation suffers from the criticism that students may
reuse code without fully understanding its functional aspect [9, 16]. Werner et al. [58] defend this
method of assessment against criticism by claiming that students’ capability to remix the code
they copied previously and make it function as desired in a new environment is a valid indication
of their understandings. Nevertheless, as no single assessment is adequate, we also examined their
computational practices to gain a more comprehensive view of their understandings. While all
codes used for transcribing computational practices are clearly defined by Brennan and Resnick
[9], the time-intensive nature of the coding process may be viewed as an additional limitation to
apply this form of assessment in large scale.

6 CONCLUSION AND FURTHER RESEARCH

The contribution of this article is to provide additional insight into the learning impact of build-
ing human-robot interfaces with a different level of embodiment. Compared to previous studies,
we exposed students to a wide range of interactive possibilities, and we examined the problem-
solving strategies that arose. Our results suggest that embodiment within robotics can serve as an
innovative approach to expand students’ learning in CT. In this way, the established curriculum
of programming an autonomous robot might be complemented with user interactions, as well as
with hybrid modes that reflect the variety of human-robot interactions in research and practice
[5]. We suggest that our findings might benefit teachers, assisting them in creating effective robotic
interventions with an embodied learning perspective that blends the traditional autonomous robot
movement with student enactment.

This form of physical enactment of computational concepts could be further applied in mixed
and augmented reality programming activities where the user controls a virtual or physical agent
through interactions with even higher levels of embodiment that involve locomotion such as walk-
ing in free space. A further study is needed with more significant numbers of participants and
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additional authentic problem-solving activities to confirm and generalize the findings of our re-
search. Open-ended projects are necessary to promote students’ creativity, giving them the op-
portunity to produce programs that are more complex. In this way, we will be able to identify and
assess a larger number of programming constructs, patterns, and mechanics and gain a broader and
more credible understanding of students’ CT skills. Additionally, more embodied-oriented assess-
ments methods should be used, measuring not only the short term but also the long-term learning
gains [36] and the ability to transfer the acquired knowledge in related domains [27]. Besides
CT performance, further research should concentrate on studying the effects of the embodiment
on the comprehension of abstract STEM concepts, such as heading and speed. Future investiga-
tions might attempt to differentiate the input devices. For example, hand-held accelerometer-based
devices (controllers such as the Nintendo Wii remote or Magic Wand), joysticks with haptic feed-
back, smartwatches, or wearable augmented reality devices (smart glasses such as Google Glass or
Microsoft HoloLens) can be used for the interaction. Finally, future studies might also examine the
use of different target platforms for the execution of code, such as humanoid robots for providing
surrogate embodied experiences or drones as a means to introduce abstract concepts related to
movement in three dimensions, such as orientation and gravity.

APPENDIX
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Examples of block commands, constructs, patterns, and mechanics in App Inventor.
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